Spaces:
Sleeping
Sleeping
File size: 3,174 Bytes
c67e57e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "3e5756d2-382b-49e9-93b5-2ecf6d0eb812",
"metadata": {},
"outputs": [],
"source": [
"import duckdb\n",
"\n",
"con = duckdb.connect()\n",
"\n",
"con.execute(\"SET s3_region='us-west-2';\")\n",
"con.execute(\"LOAD spatial;\")\n",
"con.execute(\"LOAD httpfs;\")\n",
"\n",
"query = \"\"\"\n",
" COPY (\n",
" SELECT * \n",
" FROM read_parquet('s3://overturemaps-us-west-2/release/2024-09-18.0/theme=divisions/*/*')\n",
" WHERE country = 'US' AND subtype IN ('locality', 'neighborhood')\n",
" ) TO 'us_localities_neighborhoods.parquet' (FORMAT 'parquet');\n",
"\"\"\"\n",
"con.execute(query)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "25f62dd7-5539-438b-8f0a-1d85c9bc78ab",
"metadata": {},
"outputs": [],
"source": [
"import ibis\n",
"from ibis import _\n",
"\n",
"conn = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
"\n",
"df = (conn\n",
" .read_parquet(\"us_localities_neighborhoods.parquet\")\n",
" .cast({\"geometry\": \"geometry\"})\n",
" .filter(_[\"type\"] == \"division\")\n",
" .filter(_[\"subtype\"] == \"locality\")\n",
" .mutate(name = _.names[\"primary\"])\n",
" .mutate(state_id = _.region.replace(\"US-\", \"\")) \n",
" .mutate(county = _.hierarchies[0][2]['name'] )\n",
" .mutate(key_long = _.name + ibis.literal('-') + _.county + ibis.literal('-') + _.state_id)\n",
" .select(\"key_long\",\"name\", \"county\",\"state_id\" ,\"geometry\")\n",
" )\n",
"\n",
"\n",
"## Dropping rows with same locality and state, with differing counties \n",
"county_count = (\n",
" df.group_by([\"name\", \"state_id\"])\n",
" .aggregate(county_count=_.county.nunique()) # Count unique counties for each group\n",
") \n",
"valid_names = county_count.filter(county_count.county_count == 1).select(\"name\", \"state_id\")\n",
"df_filtered = df.join(valid_names, [\"name\", \"state_id\"], how=\"inner\")\n",
"\n",
"\n",
"# if two records have the same name but different geometries, only keep the first one.\n",
"df_first = (\n",
" df_filtered.group_by(\"key_long\")\n",
" .aggregate(\n",
" name=df_filtered.name.first(),\n",
" county=df_filtered.county.first(),\n",
" state_id=df_filtered.state_id.first(),\n",
" geometry=df_filtered.geometry.first()\n",
" )\n",
"\n",
")\n",
"\n",
"df_first.execute().to_parquet(\"us_localities.parquet\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|