Spaces:
Sleeping
Sleeping
File size: 7,390 Bytes
c67e57e 02c6b99 c67e57e 02c6b99 c67e57e 02c6b99 c67e57e 02c6b99 c67e57e 02c6b99 c67e57e 02c6b99 c67e57e 02c6b99 c67e57e 02c6b99 c67e57e 02c6b99 c67e57e 6a1a3b0 02c6b99 6a1a3b0 02c6b99 6a1a3b0 02c6b99 c67e57e 97eac3a c67e57e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
{
"cells": [
{
"cell_type": "markdown",
"id": "9fe02137-ba1c-4ced-9909-b5b7c39ed6d4",
"metadata": {},
"source": [
"# Merging state/county/city polygons with party affiliation and landvote data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6452373c-d10f-472c-9174-cd05a3363587",
"metadata": {},
"outputs": [],
"source": [
"import ibis\n",
"from ibis import _\n",
"\n",
"import streamlit as st\n",
"import ibis.expr.datatypes as dt # Make sure to import the necessary module\n",
"\n",
"conn = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
"\n",
"landvote_url = \"https://huggingface.co/datasets/boettiger-lab/landvote/resolve/main/landvote_polygons.parquet\"\n",
"party_url = \"https://huggingface.co/datasets/boettiger-lab/landvote/resolve/main/party_polygons.parquet\"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "371ef7f4-95b9-49f0-80ba-48807b98b052",
"metadata": {},
"outputs": [],
"source": [
"landvote = (conn\n",
" .read_parquet(landvote_url)\n",
" .cast({\"geometry\": \"geometry\"})\n",
" .mutate(county = _.county.upper())\n",
" .mutate(municipal = _.municipal.upper())\n",
" .mutate(elect_year = _.year - _.year % 4) # get most recent election year \n",
" .cast({\"municipal\": \"string\",\"county\":\"string\"})\n",
" .mutate(municipal=ibis.case()\n",
" .when(_.jurisdiction.isin(['State','County']), ibis.literal(\"-\")) \n",
" .else_(_.municipal) \n",
" .end()\n",
" )\n",
" .mutate(county=ibis.case()\n",
" .when(_.jurisdiction.isin(['State']),ibis.literal(\"-\")) \n",
" .else_(_.county) \n",
" .end()\n",
" )\n",
" )\n",
"\n",
"party = (conn\n",
" .read_parquet(party_url)\n",
" .cast({\"geometry\": \"geometry\"})\n",
" .mutate(municipal=ibis.case()\n",
" .when(_.jurisdiction.isin(['State','County']), ibis.literal(\"-\")) \n",
" .else_(_.municipal) \n",
" .end()\n",
" )\n",
" .mutate(county=ibis.case()\n",
" .when(_.jurisdiction.isin(['State']), ibis.literal(\"-\")) \n",
" .else_(_.county) \n",
" .end()\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8fc40e96-fffd-4b23-9963-c931fdce96f6",
"metadata": {},
"outputs": [],
"source": [
"votes = (landvote\n",
" .join(party,[\"state\",\"county\",\"municipal\",\"jurisdiction\",'geometry', _.elect_year == party[\"year\"]],how = \"inner\")\n",
" .drop('elect_year','year_right')\n",
" .mutate(municipal=ibis.case()\n",
" .when(_.municipal == ibis.literal(\"-\"), None) \n",
" .else_(_.municipal) \n",
" .end()\n",
" )\n",
" .mutate(county=ibis.case()\n",
" .when(_.county == ibis.literal(\"-\"), None) \n",
" .else_(_.county) \n",
" .end()\n",
" )\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "65e75bc0-fef0-48f2-a543-7aae999579bf",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "e80cfd2e-40eb-4065-9ae6-dcaf83319d9a",
"metadata": {},
"source": [
"# Make PMTiles. Each jurisdiction type is its own layer"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1cd8f44-57fa-49a8-b438-f9e4aab747c5",
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"from huggingface_hub import HfApi, login\n",
"import streamlit as st\n",
"\n",
"login(st.secrets[\"HF_TOKEN\"])\n",
"# api = HfApi(add_to_git_credential=False)\n",
"api = HfApi()\n",
"\n",
"def hf_upload(file, repo_id):\n",
" info = api.upload_file(\n",
" path_or_fileobj=file,\n",
" path_in_repo=file,\n",
" repo_id=repo_id,\n",
" repo_type=\"dataset\",\n",
" )\n",
"def generate_pmtiles(input_file, input_file2, input_file3, output_file, max_zoom=12):\n",
" # Ensure Tippecanoe is installed\n",
" if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
" raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
"\n",
" # Construct the Tippecanoe command\n",
" command = [\n",
" \"tippecanoe\",\n",
" \"-o\", output_file,\n",
" \"-zg\",\n",
" \"--extend-zooms-if-still-dropping\",\n",
" \"--force\",\n",
" \"--projection\", \"EPSG:4326\", \n",
" \"-L\",\"state:\"+input_file,\n",
" \"-L\",\"county:\"+input_file2,\n",
" \"-L\",\"municipal:\"+input_file3\n",
" ]\n",
" # Run Tippecanoe\n",
" try:\n",
" subprocess.run(command, check=True)\n",
" print(f\"Successfully generated PMTiles file: {output_file}\")\n",
" except subprocess.CalledProcessError as e:\n",
" print(f\"Error running Tippecanoe: {e}\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7061577e-0632-4395-8ac5-241a1fab53b0",
"metadata": {},
"outputs": [],
"source": [
"gdf_state = votes.filter(_.jurisdiction == 'State').execute().set_crs(\"EPSG:4326\")\n",
"gdf_state.to_file(\"votes_state.geojson\")\n",
"\n",
"gdf_county = votes.filter(_.jurisdiction == 'County').execute().set_crs(\"EPSG:4326\")\n",
"gdf_county.to_file(\"votes_county.geojson\")\n",
"\n",
"gdf_city = votes.filter(_.jurisdiction == 'Municipal').execute().set_crs(\"EPSG:4326\")\n",
"gdf_city.to_file(\"votes_municipal.geojson\")\n",
"\n",
"generate_pmtiles(\"votes_state.geojson\", \"votes_county.geojson\",\"votes_municipal.geojson\", \"votes.pmtiles\")\n",
"hf_upload(\"votes.pmtiles\", \"boettiger-lab/landvote\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2979624-bcdf-4a8a-899a-c22fc3cdaf0e",
"metadata": {},
"outputs": [],
"source": [
"# save as parquet\n",
"votes.execute().set_crs(\"EPSG:4326\").to_parquet(\"votes.parquet\")\n",
"hf_upload(\"votes.parquet\", \"boettiger-lab/landvote\")\n"
]
},
{
"cell_type": "markdown",
"id": "2ec22cf4-cfdc-4845-a793-ed9236054ff4",
"metadata": {},
"source": [
"# "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|