File size: 6,103 Bytes
fea0eb7
 
 
 
 
 
 
 
fabf26d
 
fea0eb7
 
 
 
 
 
 
 
 
 
 
 
d0c56e2
fea0eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fabf26d
 
 
 
fea0eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
<!DOCTYPE html>
<html lang="en">

<head>
    <meta charset="UTF-8">
    <title>Zero Shot Classification - Hugging Face Transformers.js</title>

    <script type="module">
        // To-Do: transformers.js 라이브러리 중 pipeline 함수를 import하십시오.
         

        // Make it available globally
        window.pipeline = pipeline;
    </script>

    <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/css/bootstrap.min.css" rel="stylesheet">

    <link rel="stylesheet" href="css/styles.css">
</head>

<body>
    <div class="container-main">
       
        <!-- Back to Home button -->
        <div class="row mt-5">
            <div class="col-md-12 text-center">
                <a href="index.html" class="btn btn-outline-secondary"
                    style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
            </div>
        </div>

        <!-- Content -->
        <div class="container mt-5">
            <!-- Centered Titles -->
            <div class="text-center">
                <h2>Natural Language Processing</h2>
                <h4>Zero Shot Classification</h4>
            </div>

            <!-- Actual Content of this page -->
            <div id="zero-shot-classification-container" class="container mt-4">
                <h5>Zero Shot Classification with Xenova/mobilebert-uncased-mnli:</h5>
                <div class="d-flex align-items-center mb-2">
                    <label for="textText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter Text:</label>
                    <input type="text" class="form-control flex-grow-1" id="textText" value="Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app."
                        placeholder="Enter text" style="margin-right: 15px; margin-left: 15px;">
                </div>
                <div class="d-flex align-items-center">
                    <label for="labelsText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter Labels (comma separated):</label>
                    <input type="text" class="form-control flex-grow-1" id="labelsText" value="mobile, billing, website, account access"
                        placeholder="Enter labels (comma separated)" style="margin-right: 15px; margin-left: 15px;">
                    <button id="classifyButton" class="btn btn-primary ml-2"
                        onclick="classifyText()">Classify</button>
                </div>
                <div class="mt-4">
                    <h4>Output:</h4>
                    <pre id="outputArea"></pre>
                </div>
            </div>

            <hr> <!-- Line Separator -->

            <div id="zero-shot-classification-container-multi" class="container mt-4">
                <h5>Zero Shot Classification with Xenova/nli-deberta-v3-xsmall (Multi-Label):</h5>
                <div class="d-flex align-items-center mb-2">
                    <label for="textTextMulti" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter Text:</label>
                    <input type="text" class="form-control flex-grow-1" id="textTextMulti" value="I have a problem with my iphone that needs to be resolved asap!"
                        placeholder="Enter text" style="margin-right: 15px; margin-left: 15px;">
                </div>
                <div class="d-flex align-items-center">
                    <label for="labelsTextMulti" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter Labels (comma separated):</label>
                    <input type="text" class="form-control flex-grow-1" id="labelsTextMulti" value="urgent, not urgent, phone, tablet, computer"
                        placeholder="Enter labels (comma separated)" style="margin-right: 15px; margin-left: 15px;">
                    <button id="classifyButtonMulti" class="btn btn-primary ml-2"
                        onclick="classifyTextMulti()">Classify</button>
                </div>
                <div class="mt-4">
                    <h4>Output:</h4>
                    <pre id="outputAreaMulti"></pre>
                </div>
            </div>

            <!-- Back to Home button -->
            <div class="row mt-5">
                <div class="col-md-12 text-center">
                    <a href="index.html" class="btn btn-outline-secondary"
                        style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
                </div>
            </div>
        </div>
    </div>

    <script>

        let classifier;
        let classifierMulti;

        // Initialize the sentiment analysis model
        async function initializeModel() {
            // To-Do: pipeline 함수에 task와 model을 지정하여 zero 샷 분류 모델을 생성하여 classifier에 저장하십시오. 모델은 Xenova/mobilebert-uncased-mnli 사용
            
            // To-Do: pipeline 함수에 task와 model을 지정하여 zero 샷 분류 모델을 생성하여 classifierMulti에 저장하십시오. 모델은 Xenova/nli-deberta-v3-xsmall 사용
            

        }

        async function classifyText() {
            const text = document.getElementById("textText").value.trim();
            const labels = document.getElementById("labelsText").value.trim().split(",").map(item => item.trim());

            const result = await classifier(text, labels);

            document.getElementById("outputArea").innerText = JSON.stringify(result, null, 2);
        }

        async function classifyTextMulti() {
            const text = document.getElementById("textTextMulti").value.trim();
            const labels = document.getElementById("labelsTextMulti").value.trim().split(",").map(item => item.trim());

            const result = await classifierMulti(text, labels, { multi_label: true });

            document.getElementById("outputAreaMulti").innerText = JSON.stringify(result, null, 2);
        }

        // Initialize the model after the DOM is completely loaded
        window.addEventListener("DOMContentLoaded", initializeModel);
    </script>
</body>

</html>