Spaces:
Runtime error
Runtime error
File size: 2,911 Bytes
8a4de8f 4a92b37 8a4de8f 4a92b37 8a4de8f 2949d74 7ab1b46 2949d74 8a4de8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
from ctransformers import AutoModelForCausalLM
from transformers import AutoTokenizer, pipeline
import torch
import re
# Initialize the model
model = AutoModelForCausalLM.from_pretrained("Detsutut/Igea-1B-v0.0.1-Q4_K_M-GGUF", model_file="igea-1b-v0.0.1-q4_k_m.gguf", model_type="mistral", hf=True)
tokenizer = AutoTokenizer.from_pretrained( "Detsutut/Igea-1B-v0.0.1")
gen_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer
)
# Define the function to generate text
def generate_text(input_text, max_new_tokens=30, temperature=1, top_p=0.95, split_output=False):
if split_output:
max_new_tokens=30
top_p=0.95
output = gen_pipeline(
input_text,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
return_full_text = False
)
generated_text = output[0]['generated_text']
if split_output:
sentences = re.split('(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', generated_text)
if sentences:
generated_text = sentences[0]
return f"<span>{input_text}</span><b style='color: blue;'>{generated_text}</b>"
# Create the Gradio interface
input_text = gr.Textbox(lines=2, placeholder="Enter your text here...", label="Input Text")
max_new_tokens = gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Max New Tokens")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.01, label="Top-p")
split_output = gr.Checkbox(label="Quick single-sentence output", value=True)
with gr.Blocks(css="#outbox { border-radius: 8px !important; border: 1px solid #e5e7eb !important; padding: 8px !important; text-align:center !important;}") as iface:
gr.Markdown("# Igea Text Generation Interface ⚕️🩺")
gr.Markdown("🐢💬 To guarantee a reasonable througput (<1 min to answer with default settings), this space employs a **GGUF quantized version of [Igea 1B](https://huggingface.co/bmi-labmedinfo/Igea-1B-v0.0.1)**, optimized for **hardware-limited, CPU-only machines** like the free-tier HuggingFace space.")
gr.Markdown("⚠️ Read the **[bias, risks and limitations](https://huggingface.co/bmi-labmedinfo/Igea-1B-v0.0.1#%F0%9F%9A%A8%E2%9A%A0%EF%B8%8F%F0%9F%9A%A8-bias-risks-and-limitations-%F0%9F%9A%A8%E2%9A%A0%EF%B8%8F%F0%9F%9A%A8)** of Igea before use!")
input_text.render()
with gr.Accordion("Advanced Options", open=False):
max_new_tokens.render()
temperature.render()
top_p.render()
split_output.render()
output = gr.HTML(label="Generated Text",elem_id="outbox")
btn = gr.Button("Generate")
btn.click(generate_text, [input_text, max_new_tokens, temperature, top_p, split_output], output)
# Launch the interface
if __name__ == "__main__":
iface.launch(inline=True)
|