File size: 9,052 Bytes
9b6a6a6
 
 
 
 
 
 
 
 
 
 
 
99bb9dd
9b6a6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
from typing import Any

import gradio as gr
import requests

from dotenv import load_dotenv


load_dotenv()


API_ENDPOINT = f"{os.getenv('MUSHEFF_API_BASE_URL')}/classify"


def classify_image(img_path: str) -> tuple[dict[str, Any]]:
    """Classifies a mushroom image, returning species, edibility, and confidence score.
    In case of error returns the error.

    :param img_path: the path to the mushroom image
    :type img_path: str
    :return: confidence score, species, edibility or error message (as output or error components)
    :rtype: tuple[dict[str, Any]]
    """
    try:
        with open(img_path, "rb") as fp:
            files = {"image_file": (fp.name, fp)}

            # Calling the service
            response = requests.post(API_ENDPOINT, files=files)

            # Handle HTTP errors
            if response.status_code != 200:
                error_msg = response.json().get(
                    "detail", f"API Error {response.status_code}"
                )
                return show_error(f"Backend Error: {error_msg}")

            # Process successful response
            data = response.json()
            return show_results(data)

    except requests.exceptions.Timeout:
        return show_error("Request timed out. Please try again.")

    except requests.exceptions.ConnectionError:
        return show_error("Cannot connect to the server. Please check your connection.")
    except TypeError:
        return show_error("Invalid input. Please select a valid file and try again.")
    except Exception as e:
        return show_error(f"System error: {e}")


def show_results(data: dict) -> tuple[dict[str, Any]]:
    """Show the results data retrieved from the service
    in the respective output components

    :param data: the data retrieved from the classify service
    :type data: dict
    :return: the output components
    :rtype: tuple[dict[str, Any]]
    """

    # Create visual output components
    confidence = data["confidence"]
    class_name = data["mushroom_type"]
    edibility = data["toxicity_profile"]

    return (
        # Confidence output
        gr.update(
            value=generate_confidence_html(confidence),
        ),
        # Species display
        gr.update(
            value=generate_class_html(class_name),
        ),
        # Edibility alert
        gr.update(
            value=generate_edibility_html(edibility, confidence, class_name),
        ),
        gr.update(value=""),  # Error output
    )


def show_error(message: str) -> tuple[dict[str, Any]]:
    """Update the error output component with the error message
    Nullify all the other output components

    :param message: the error message
    :type message: str
    :return: the error message component, along with the other nullified output components
    :rtype: tuple[dict[str, Any]]
    """
    return (
        gr.update(value=""),  # Confidence output
        gr.update(value=""),  # Class output
        gr.update(value=""),  # Edibility output
        gr.update(value=generate_error_html(message)),  # Error alert
    )


def generate_confidence_html(confidence):
    return f"""<div class="confidence-display" style="font-size:1.1rem">
        <div class="confidence-header">
            <span class="confidence-icon">πŸ“Š</span>
            <span class="confidence-title">Classification Confidence</span>
        </div>

        <div class="confidence-visual">
            <div class="confidence-bar-bg">
                <div class="confidence-bar-fill" style="width: {confidence*100:.2f}%"></div>
            </div>
            <div class="confidence-value">{confidence*100:.2f}%</div>
        </div>
    </div>
    """


def generate_class_html(class_name):
    return f"""
    <div style='
        font-size: 1.5rem;
        text-align: center;
        padding: 20px;
        background: #E3F2FD;
        border-radius: 8px;
    '>
        πŸ„ <br><strong>{class_name.replace("_", " ")}</strong>
    </div>
    """


def generate_edibility_html(edibility, confidence, class_name):
    if edibility == "edible":
        return (
            f"<div class='edible-alert'>"
            f"βœ… SAFE TO EAT (with verification)<hr style='margin:10px 0;'>"
            f"<div style='font-size:1.1rem'>"
            f"Always confirm with mycologist before consumption"
            f"</div></div>"
        )
    else:
        return (
            f"<div class='poison-alert'>"
            f"☠️ <strong>POISONOUS!</strong> DO NOT CONSUME<hr style='margin:10px 0;'>"
            f"<div style='font-size:1.1rem;color:var(--poison-color)'>"
            f"Misidentification risk: {100 - confidence*100:.2f}%<br>"
            f"<em>Immediately contact poison control if ingested</em>"
            f"</div></div>"
        )


def generate_error_html(message):
    return f"""
    <div class='error-banner'>
        <span class='error-icon'>❌</span>
        <strong>CLASSIFICATION FAILED</strong><br>
        {message}<br>
        <em>Please try again or contact support</em>
    </div>
    """


def toggle_row_visibility(*comp_vals):
    """Update row visibility based on non empty value(s) of component(s) on row"""
    return gr.Row(visible=any(comp_vals))


def handle_image_change(new_image):
    """This function will be called when image changes (cleared or new one selected)"""
    # New image selected or deleted (new_image or None), in any case reset output components
    return (
        new_image,
        gr.Row(visible=False),
        gr.Row(visible=False),
        gr.update(visible=False),
    )


def hr_line_update():
    return gr.update(visible=True)


# Custom HTML components
safety_html = """
<div class="safety-banner">
    <div class="warning-icon">⚠️</div>
    <strong>CRITICAL SAFETY NOTICE:</strong> FungiSage Vision provides probabilistic guidance only - not guarantees.
    Mushroom misidentification can be fatal. Always consult certified mycologists before consumption.
</div>
"""

slogan_html = """
<div class="slogan-container">
    <div class="mushroom-icon">πŸ„</div>
    <div class="slogan-text">
        <span class="brand-tagline">Massif Mushroom Intelligence.</span>
        <div class="brand-action">
            <span class="brand-name">FungiSage Vision</span> Guides,
            <span class="verify-emphasis">You Verify.</span>
        </div>
    </div>
</div>
"""

# CSS file path
css_path = os.path.join(os.path.dirname(__file__), "static/styles/custom.css")

with gr.Blocks(
    theme=gr.themes.Glass(),
    css_paths=css_path,
) as demo:
    gr.HTML(safety_html)
    gr.HTML(slogan_html)

    # Input section
    with gr.Group(elem_id="inputsContainer"):
        gr.Markdown("### Upload Mushroom Image", elem_id="uploadHeader")
        image_input = gr.Image(type="filepath", label="", height=300)
        classify_btn = gr.Button(
            "Classify Mushroom", elem_id="classifyBtn", variant="primary"
        )

    # Output section
    with gr.Group(elem_id="outputsContainer"):
        with gr.Row(visible=False, scale=1, equal_height=True) as results_group:
            with gr.Column(scale=1, elem_id="confCol"):
                confidence_output = gr.HTML(
                    label="Confidence Level", elem_classes="output-card"
                )

            with gr.Column(scale=2, elem_id="speciesCol"):
                class_output = gr.HTML(
                    label="Identified Species", elem_classes="output-card"
                )

            with gr.Column(scale=1, elem_id="edibilityCol"):
                edibility_output = gr.HTML(
                    label="Safety Assessment", elem_classes="output-card"
                )

        with gr.Row(visible=False) as errors_group:
            error_output = gr.HTML(elem_classes="error-card")

        # Used only for auto scrolling when results or errors occur
        bottom_line = gr.HTML("<hr>", visible=False, elem_id="bottomLine")

    # Classification function called on button click
    classify_btn.click(
        fn=classify_image,
        inputs=image_input,
        outputs=[
            confidence_output,
            class_output,
            edibility_output,
            error_output,
        ],
    ).then(
        fn=toggle_row_visibility,
        inputs=[confidence_output, class_output, edibility_output],
        outputs=results_group,  # If any of the result outputs (got results from service), then show results row
    ).then(
        fn=toggle_row_visibility,
        inputs=[error_output],
        outputs=errors_group,  # If error occurred, then show errors row
    ).then(
        fn=hr_line_update,
        inputs=[],
        outputs=[bottom_line],
        scroll_to_output=True,  # Useful to scroll there after results or errors occur
    )

    # Handle image changes (upload or clear/hide rows with results and errors)
    image_input.change(
        fn=handle_image_change,
        inputs=image_input,
        outputs=[image_input, results_group, errors_group, bottom_line],
    )


if __name__ == "__main__":
    demo.launch()