File size: 5,518 Bytes
abf3d6e
 
 
 
 
 
 
 
 
 
 
 
 
8eb9095
abf3d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb9095
 
 
abf3d6e
 
 
 
 
 
 
 
fbd9231
abf3d6e
 
 
 
 
 
 
 
 
 
 
 
 
fbd9231
abf3d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
from tryon_inference import run_inference
import os
import numpy as np
from PIL import Image
import tempfile

def gradio_inference(
    image_data, 
    garment, 
    num_steps=50, 
    guidance_scale=30.0, 
    seed=-1, 
    size=(768,1024)
):
    """Wrapper function for Gradio interface"""
    # Use temporary directory
    with tempfile.TemporaryDirectory() as tmp_dir:
        # Save inputs to temp directory
        temp_image = os.path.join(tmp_dir, "image.png")
        temp_mask = os.path.join(tmp_dir, "mask.png")
        temp_garment = os.path.join(tmp_dir, "garment.png")
        
        # Extract image and mask from ImageEditor data
        image = image_data["background"]
        mask = image_data["layers"][0]  # First layer contains the mask
        
        # Convert to numpy array and process mask
        mask_array = np.array(mask)
        is_black = np.all(mask_array < 10, axis=2)
        mask = Image.fromarray(((~is_black) * 255).astype(np.uint8))
        
        # Save files to temp directory
        image.save(temp_image)
        mask.save(temp_mask)
        garment.save(temp_garment)
        
        try:
            # Run inference
            _, tryon_result = run_inference(
                image_path=temp_image,
                mask_path=temp_mask,
                garment_path=temp_garment,
                num_steps=num_steps,
                guidance_scale=guidance_scale,
                seed=seed,
                size=size
            )
            return tryon_result
        except Exception as e:
            raise gr.Error(f"Error during inference: {str(e)}")

def create_demo():
    with gr.Blocks() as demo:
        gr.Markdown("""
        # CATVTON FLUX Virtual Try-On Demo
        Upload a model image, an agnostic mask, and a garment image to generate virtual try-on results.
        
        [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha)
        [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux)
        """)
        
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    image_input = gr.ImageMask(
                        label="Model Image (Draw mask where garment should go)", 
                        type="pil",
                        height=600,
                    )
                    gr.Examples(
                        examples=[
                            ["./example/person/00008_00.jpg"],
                            ["./example/person/00055_00.jpg"],
                            ["./example/person/00057_00.jpg"],
                            ["./example/person/00067_00.jpg"],
                            ["./example/person/00069_00.jpg"],
                        ],
                        inputs=[image_input],
                        label="Person Images",
                    )
                with gr.Column():
                    garment_input = gr.Image(label="Garment Image", type="pil", height=600)
                    gr.Examples(
                        examples=[
                            ["./example/garment/04564_00.jpg"],
                            ["./example/garment/00055_00.jpg"],
                            ["./example/garment/00057_00.jpg"],
                            ["./example/garment/00067_00.jpg"],
                            ["./example/garment/00069_00.jpg"],
                        ],
                        inputs=[garment_input],
                        label="Garment Images",
                    ) 
                
            with gr.Row():
                num_steps = gr.Slider(
                    minimum=1, 
                    maximum=100, 
                    value=50, 
                    step=1, 
                    label="Number of Steps"
                )
                guidance_scale = gr.Slider(
                    minimum=1.0, 
                    maximum=50.0, 
                    value=30.0, 
                    step=0.5, 
                    label="Guidance Scale"
                )
                seed = gr.Slider(
                    minimum=-1,
                    maximum=2147483647,
                    step=1,
                    value=-1,
                    label="Seed (-1 for random)"
                )
            
            submit_btn = gr.Button("Generate Try-On", variant="primary")
            
            with gr.Column():
                tryon_output = gr.Image(label="Try-On Result")
                
        with gr.Row():
            gr.Markdown("""
            ### Notes:
            - The model image should be a full-body photo
            - The mask should indicate the region where the garment will be placed
            - The garment image should be on a clean background
            """)
        
        submit_btn.click(
            fn=gradio_inference,
            inputs=[
                image_input,
                garment_input,
                num_steps,
                guidance_scale,
                seed
            ],
            outputs=[tryon_output],
            api_name="try-on"
        )
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.queue()  # Enable queuing for multiple users
    demo.launch(
        share=True,
        server_name="0.0.0.0"  # Makes the server accessible from other machines
    )