Spaces:
Runtime error
Runtime error
File size: 12,936 Bytes
60be607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import asyncio
import json
import logging
import os
import traceback
from threading import Thread
import speech_recognition as sr
import uvicorn
from fastapi import Depends, FastAPI, Header, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.requests import Request
from fastapi.responses import JSONResponse
from pydub import AudioSegment
from sse_starlette import EventSourceResponse
import extensions.openai.completions as OAIcompletions
import extensions.openai.embeddings as OAIembeddings
import extensions.openai.images as OAIimages
import extensions.openai.logits as OAIlogits
import extensions.openai.models as OAImodels
import extensions.openai.moderations as OAImoderations
from extensions.openai.errors import ServiceUnavailableError
from extensions.openai.tokens import token_count, token_decode, token_encode
from extensions.openai.utils import _start_cloudflared
from modules import shared
from modules.logging_colors import logger
from modules.models import unload_model
from modules.text_generation import stop_everything_event
from .typing import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
DecodeRequest,
DecodeResponse,
EmbeddingsRequest,
EmbeddingsResponse,
EncodeRequest,
EncodeResponse,
LoadLorasRequest,
LoadModelRequest,
LogitsRequest,
LogitsResponse,
LoraListResponse,
ModelInfoResponse,
ModelListResponse,
TokenCountResponse,
to_dict
)
params = {
'embedding_device': 'cpu',
'embedding_model': 'sentence-transformers/all-mpnet-base-v2',
'sd_webui_url': '',
'debug': 0
}
streaming_semaphore = asyncio.Semaphore(1)
def verify_api_key(authorization: str = Header(None)) -> None:
expected_api_key = shared.args.api_key
if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"):
raise HTTPException(status_code=401, detail="Unauthorized")
def verify_admin_key(authorization: str = Header(None)) -> None:
expected_api_key = shared.args.admin_key
if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"):
raise HTTPException(status_code=401, detail="Unauthorized")
app = FastAPI()
check_key = [Depends(verify_api_key)]
check_admin_key = [Depends(verify_admin_key)]
# Configure CORS settings to allow all origins, methods, and headers
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
@app.options("/", dependencies=check_key)
async def options_route():
return JSONResponse(content="OK")
@app.post('/v1/completions', response_model=CompletionResponse, dependencies=check_key)
async def openai_completions(request: Request, request_data: CompletionRequest):
path = request.url.path
is_legacy = "/generate" in path
if request_data.stream:
async def generator():
async with streaming_semaphore:
response = OAIcompletions.stream_completions(to_dict(request_data), is_legacy=is_legacy)
for resp in response:
disconnected = await request.is_disconnected()
if disconnected:
break
yield {"data": json.dumps(resp)}
return EventSourceResponse(generator()) # SSE streaming
else:
response = OAIcompletions.completions(to_dict(request_data), is_legacy=is_legacy)
return JSONResponse(response)
@app.post('/v1/chat/completions', response_model=ChatCompletionResponse, dependencies=check_key)
async def openai_chat_completions(request: Request, request_data: ChatCompletionRequest):
path = request.url.path
is_legacy = "/generate" in path
if request_data.stream:
async def generator():
async with streaming_semaphore:
response = OAIcompletions.stream_chat_completions(to_dict(request_data), is_legacy=is_legacy)
for resp in response:
disconnected = await request.is_disconnected()
if disconnected:
break
yield {"data": json.dumps(resp)}
return EventSourceResponse(generator()) # SSE streaming
else:
response = OAIcompletions.chat_completions(to_dict(request_data), is_legacy=is_legacy)
return JSONResponse(response)
@app.get("/v1/models", dependencies=check_key)
@app.get("/v1/models/{model}", dependencies=check_key)
async def handle_models(request: Request):
path = request.url.path
is_list = request.url.path.split('?')[0].split('#')[0] == '/v1/models'
if is_list:
response = OAImodels.list_dummy_models()
else:
model_name = path[len('/v1/models/'):]
response = OAImodels.model_info_dict(model_name)
return JSONResponse(response)
@app.get('/v1/billing/usage', dependencies=check_key)
def handle_billing_usage():
'''
Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31
'''
return JSONResponse(content={"total_usage": 0})
@app.post('/v1/audio/transcriptions', dependencies=check_key)
async def handle_audio_transcription(request: Request):
r = sr.Recognizer()
form = await request.form()
audio_file = await form["file"].read()
audio_data = AudioSegment.from_file(audio_file)
# Convert AudioSegment to raw data
raw_data = audio_data.raw_data
# Create AudioData object
audio_data = sr.AudioData(raw_data, audio_data.frame_rate, audio_data.sample_width)
whipser_language = form.getvalue('language', None)
whipser_model = form.getvalue('model', 'tiny') # Use the model from the form data if it exists, otherwise default to tiny
transcription = {"text": ""}
try:
transcription["text"] = r.recognize_whisper(audio_data, language=whipser_language, model=whipser_model)
except sr.UnknownValueError:
print("Whisper could not understand audio")
transcription["text"] = "Whisper could not understand audio UnknownValueError"
except sr.RequestError as e:
print("Could not request results from Whisper", e)
transcription["text"] = "Whisper could not understand audio RequestError"
return JSONResponse(content=transcription)
@app.post('/v1/images/generations', dependencies=check_key)
async def handle_image_generation(request: Request):
if not os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', '')):
raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.")
body = await request.json()
prompt = body['prompt']
size = body.get('size', '1024x1024')
response_format = body.get('response_format', 'url') # or b64_json
n = body.get('n', 1) # ignore the batch limits of max 10
response = await OAIimages.generations(prompt=prompt, size=size, response_format=response_format, n=n)
return JSONResponse(response)
@app.post("/v1/embeddings", response_model=EmbeddingsResponse, dependencies=check_key)
async def handle_embeddings(request: Request, request_data: EmbeddingsRequest):
input = request_data.input
if not input:
raise HTTPException(status_code=400, detail="Missing required argument input")
if type(input) is str:
input = [input]
response = OAIembeddings.embeddings(input, request_data.encoding_format)
return JSONResponse(response)
@app.post("/v1/moderations", dependencies=check_key)
async def handle_moderations(request: Request):
body = await request.json()
input = body["input"]
if not input:
raise HTTPException(status_code=400, detail="Missing required argument input")
response = OAImoderations.moderations(input)
return JSONResponse(response)
@app.post("/v1/internal/encode", response_model=EncodeResponse, dependencies=check_key)
async def handle_token_encode(request_data: EncodeRequest):
response = token_encode(request_data.text)
return JSONResponse(response)
@app.post("/v1/internal/decode", response_model=DecodeResponse, dependencies=check_key)
async def handle_token_decode(request_data: DecodeRequest):
response = token_decode(request_data.tokens)
return JSONResponse(response)
@app.post("/v1/internal/token-count", response_model=TokenCountResponse, dependencies=check_key)
async def handle_token_count(request_data: EncodeRequest):
response = token_count(request_data.text)
return JSONResponse(response)
@app.post("/v1/internal/logits", response_model=LogitsResponse, dependencies=check_key)
async def handle_logits(request_data: LogitsRequest):
'''
Given a prompt, returns the top 50 most likely logits as a dict.
The keys are the tokens, and the values are the probabilities.
'''
response = OAIlogits._get_next_logits(to_dict(request_data))
return JSONResponse(response)
@app.post("/v1/internal/stop-generation", dependencies=check_key)
async def handle_stop_generation(request: Request):
stop_everything_event()
return JSONResponse(content="OK")
@app.get("/v1/internal/model/info", response_model=ModelInfoResponse, dependencies=check_key)
async def handle_model_info():
payload = OAImodels.get_current_model_info()
return JSONResponse(content=payload)
@app.get("/v1/internal/model/list", response_model=ModelListResponse, dependencies=check_admin_key)
async def handle_list_models():
payload = OAImodels.list_models()
return JSONResponse(content=payload)
@app.post("/v1/internal/model/load", dependencies=check_admin_key)
async def handle_load_model(request_data: LoadModelRequest):
'''
This endpoint is experimental and may change in the future.
The "args" parameter can be used to modify flags like "--load-in-4bit"
or "--n-gpu-layers" before loading a model. Example:
```
"args": {
"load_in_4bit": true,
"n_gpu_layers": 12
}
```
Note that those settings will remain after loading the model. So you
may need to change them back to load a second model.
The "settings" parameter is also a dict but with keys for the
shared.settings object. It can be used to modify the default instruction
template like this:
```
"settings": {
"instruction_template": "Alpaca"
}
```
'''
try:
OAImodels._load_model(to_dict(request_data))
return JSONResponse(content="OK")
except:
traceback.print_exc()
return HTTPException(status_code=400, detail="Failed to load the model.")
@app.post("/v1/internal/model/unload", dependencies=check_admin_key)
async def handle_unload_model():
unload_model()
@app.get("/v1/internal/lora/list", response_model=LoraListResponse, dependencies=check_admin_key)
async def handle_list_loras():
response = OAImodels.list_loras()
return JSONResponse(content=response)
@app.post("/v1/internal/lora/load", dependencies=check_admin_key)
async def handle_load_loras(request_data: LoadLorasRequest):
try:
OAImodels.load_loras(request_data.lora_names)
return JSONResponse(content="OK")
except:
traceback.print_exc()
return HTTPException(status_code=400, detail="Failed to apply the LoRA(s).")
@app.post("/v1/internal/lora/unload", dependencies=check_admin_key)
async def handle_unload_loras():
OAImodels.unload_all_loras()
return JSONResponse(content="OK")
def run_server():
server_addr = '0.0.0.0' if shared.args.listen else '127.0.0.1'
port = int(os.environ.get('OPENEDAI_PORT', shared.args.api_port))
ssl_certfile = os.environ.get('OPENEDAI_CERT_PATH', shared.args.ssl_certfile)
ssl_keyfile = os.environ.get('OPENEDAI_KEY_PATH', shared.args.ssl_keyfile)
if shared.args.public_api:
def on_start(public_url: str):
logger.info(f'OpenAI-compatible API URL:\n\n{public_url}\n')
_start_cloudflared(port, shared.args.public_api_id, max_attempts=3, on_start=on_start)
else:
if ssl_keyfile and ssl_certfile:
logger.info(f'OpenAI-compatible API URL:\n\nhttps://{server_addr}:{port}\n')
else:
logger.info(f'OpenAI-compatible API URL:\n\nhttp://{server_addr}:{port}\n')
if shared.args.api_key:
if not shared.args.admin_key:
shared.args.admin_key = shared.args.api_key
logger.info(f'OpenAI API key:\n\n{shared.args.api_key}\n')
if shared.args.admin_key and shared.args.admin_key != shared.args.api_key:
logger.info(f'OpenAI API admin key (for loading/unloading models):\n\n{shared.args.admin_key}\n')
logging.getLogger("uvicorn.error").propagate = False
uvicorn.run(app, host=server_addr, port=port, ssl_certfile=ssl_certfile, ssl_keyfile=ssl_keyfile)
def setup():
if shared.args.nowebui:
run_server()
else:
Thread(target=run_server, daemon=True).start()
|