File size: 10,294 Bytes
d36d50b
 
 
 
 
 
 
ebc546a
d36d50b
 
 
 
 
 
bb42b73
d36d50b
 
 
d7c4b94
d36d50b
 
ebc546a
 
 
 
 
 
 
 
 
 
 
 
bb42b73
 
 
 
 
 
 
ebc546a
bb42b73
 
 
 
 
 
 
ebc546a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb42b73
ebc546a
d36d50b
bb42b73
d36d50b
 
 
 
bb42b73
d36d50b
 
 
 
 
d7c4b94
ebc546a
d7c4b94
 
 
 
 
 
 
d36d50b
 
 
d7c4b94
bb42b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36d50b
d7c4b94
 
 
 
 
 
bb42b73
d36d50b
bb42b73
d36d50b
bb42b73
d36d50b
bb42b73
 
d36d50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd87bdb
d36d50b
ebc546a
bb42b73
ebc546a
 
bb42b73
 
 
 
 
 
ebc546a
d36d50b
 
 
 
 
 
 
ebc546a
d36d50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc546a
d36d50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from typing import Iterable, Union, Tuple
from collections import Counter

import argparse
import os

import yaml
from pyarabic.araby import tokenize, strip_tatweel, strip_tashkeel
from tqdm import tqdm

import numpy as np
import torch as T
from torch.utils.data import DataLoader

from diac_utils import HARAKAT_MAP, shakkel_char, flat2_3head
from model_partial import PartialDD
from data_utils import DatasetUtils
from dataloader import DataRetriever
from dataloader_plm import DataRetriever as DataRetrieverPLM
from segment import segment

from partial_dd_metrics import (
    parse_data,
    load_data,
    make_mask_hard,
    make_mask_logits,
)

def apply_tashkeel(
        line: str,
        diacs: Union[np.ndarray, T.Tensor]
):
    line_w_diacs = ""
    ts, tw = diacs.shape
    diacs = diacs.flatten()
    diacs_h3 = flat2_3head(diacs)
    diacs_h3 = tuple(x.reshape(ts, tw) for x in diacs_h3)
    diac_char_idx = 0
    diac_word_idx = 0
    for ch in line:
        line_w_diacs += ch
        if ch == " ":
            diac_char_idx = 0
            diac_word_idx += 1
        else:
            tashkeel = (diacs_h3[0][diac_word_idx][diac_char_idx], diacs_h3[1][diac_word_idx][diac_char_idx], diacs_h3[2][diac_word_idx][diac_char_idx])
            diac_char_idx += 1
            line_w_diacs += shakkel_char(*tashkeel)
    return line_w_diacs
    
def diac_text(data, model_output_base, model_output_ctxt, selection_mode='contrastive-hard', threshold=0.1):

    mode = selection_mode
    if mode == 'contrastive-hard':
        # model_output_base = parse_data(data_base)[0]
        # model_output_ctxt = parse_data(data_ctxt)[0]
        # diacs = np.where(diacs_base != diacs_ctxt, diacs_ctxt, 0)
        diacritics = np.where(
            make_mask_hard(model_output_ctxt, model_output_base),
            model_output_ctxt.argmax(-1),
            0,
        ).astype(int)
    else:
        # model_output_base = parse_data(data_base, logits=True, side='base')[2]
        # model_output_ctxt = parse_data(data_ctxt, logits=True, side='ctxt')[2]
        diacritics = np.where(
            make_mask_logits(
                model_output_ctxt, model_output_base,
                version=mode, threshold=threshold,
            ),
            model_output_ctxt.argmax(-1),
            0,
        ).astype(int)
    #^ shape: [b, tc | ClassId]
    diacs_pred = model_output_base
    
    assert len(diacs_pred) == len(data)
    data = [
        ' '.join(tokenize(
            line.strip(),
            morphs=[strip_tashkeel, strip_tatweel]
        ))
        for line in data
    ]
    
    output = []
    for line, line_diacs in zip(
            tqdm(data),
            diacritics
    ):
        line = apply_tashkeel(line, line_diacs)
        output.append(line)

    return output

class Predictor:
    def __init__(self, config):

        self.data_utils = DatasetUtils(config)
        vocab_size = len(self.data_utils.letter_list)
        word_embeddings = self.data_utils.embeddings
        self.config = config 
       
        self.device = T.device(
            config['predictor'].get('device', 'cuda:0')
            if T.cuda.is_available() else 'cpu'
        )

        self.model = PartialDD(config)
        if config["model-name"] == "D2":
            self.model.sentence_diac.build(word_embeddings, vocab_size)
            state_dict = T.load(config["paths"]["load"], map_location=T.device(self.device))['state_dict']
        else:
            state_dict = T.load(config["paths"]["load-td2"], map_location=T.device(self.device))['state_dict']

        self.model.load_state_dict(state_dict, strict=False)
        self.model.to(self.device)
        self.model.eval()

    def create_dataloader(self, text, do_partial, do_hard_mask, threshold, model_name):
        self.threshold = threshold
        self.do_hard_mask = do_hard_mask

        stride = self.config["segment"]["stride"]
        window = self.config["segment"]["window"]
        min_window = self.config["segment"]["min-window"]
        if self.do_hard_mask or not do_partial:
            segments, mapping = segment([text], stride, window, min_window)

            mapping_lines = []
            for sent_idx, seg_idx, word_idx, char_idx in mapping:
                mapping_lines += [f"{sent_idx}, {seg_idx}, {word_idx}, {char_idx}"]

            self.mapping = self.data_utils.load_mapping_v3_from_list(mapping_lines)
            self.original_lines = [text]
            self.segments = segments
        else:
            segments = text.split('\n')

        self.segments = segments
        self.original_lines = text.split('\n')

        self.data_loader = DataLoader(
            DataRetriever(self.data_utils, segments) 
            if model_name == "D2" 
            else DataRetrieverPLM(segments, self.data_utils,
                is_test=True,
                tokenizer=self.model.tokenizer
            ),
            batch_size=self.config["predictor"].get("batch-size", 32),
            shuffle=False,
            num_workers=self.config['loader'].get('num-workers', 0),
        )
        
class PredictTri(Predictor):
    def __init__(self, config):
        super().__init__(config)
        self.diacritics = {
            "FATHA": 1,
            "KASRA": 2,
            "DAMMA": 3,
            "SUKUN": 4
        }
        self.votes: Union[Counter[int], Counter[bool]] = Counter()

    def count_votes(
            self,
            things: Union[Iterable[int], Iterable[bool]]
    ):
        self.votes.clear()
        self.votes.update(things)
        return self.votes.most_common(1)[0][0]

    def predict_majority_vote(self):
        y_gen_diac, y_gen_tanween, y_gen_shadda = self.model.predict(self.data_loader)
        diacritized_lines, _ = self.coalesce_votes_by_majority(y_gen_diac, y_gen_tanween, y_gen_shadda)
        return diacritized_lines
    
    def predict_partial(self, do_partial, lines):
        outputs = self.model.predict_partial(self.data_loader, return_extra=True, eval_only='both', do_partial=do_partial)

        if self.do_hard_mask or not do_partial:
            y_gen_diac, y_gen_tanween, y_gen_shadda = outputs['diacritics']
            diac_lines, _ = self.coalesce_votes_by_majority(y_gen_diac, y_gen_tanween, y_gen_shadda)
        else:
            diac_lines = diac_text(lines, outputs["other"][1], outputs["other"][0], selection_mode='1', threshold=self.threshold)

        return '\n'.join(diac_lines)

    def predict_majority_vote_context_contrastive(self, overwrite_cache=False):
        assert isinstance(self.model, PartialDD)
        if not os.path.exists("dataset/cache/y_gen_diac.npy") or overwrite_cache:
            if not os.path.exists("dataset/cache"):
                os.mkdir("dataset/cache")
            # segment_outputs = self.model.predict_partial(self.data_loader, return_extra=True)
            segment_outputs = self.model.predict_partial(self.data_loader, return_extra=False, eval_only='both')
            T.save(segment_outputs, "dataset/cache/cache.pt")
        else:
            segment_outputs = T.load("dataset/cache/cache.pt")
        
        y_gen_diac, y_gen_tanween, y_gen_shadda = segment_outputs['diacritics']
        diacritized_lines, extra_for_lines = self.coalesce_votes_by_majority(
            y_gen_diac, y_gen_tanween, y_gen_shadda,
        )
        extra_out = {
            'line_data': {
                **extra_for_lines,
            },
            'segment_data': {
                **segment_outputs,
                # 'logits': segment_outputs['logits'],
            }
        }

        return diacritized_lines, extra_out

    def coalesce_votes_by_majority(
            self,
            y_gen_diac: np.ndarray,
            y_gen_tanween: np.ndarray,
            y_gen_shadda: np.ndarray,
    ):
        prepped_lines_og = [' '.join(tokenize(strip_tatweel(line))) for line in self.original_lines]
        max_line_chars = max(len(line) for line in prepped_lines_og)
        diacritics_pred = np.full((len(self.original_lines), max_line_chars), fill_value=-1, dtype=int)

        count_processed_sents = 0
        do_break = False
        diacritized_lines = []
        for sent_idx, line in enumerate(tqdm(prepped_lines_og)):
            count_processed_sents = sent_idx + 1
            line = line.strip()
            diacritized_line = ""
            for char_idx, char in enumerate(line):
                diacritized_line += char
                char_vote_diacritic = []
                # ? This is the voting part
                if sent_idx not in self.mapping:
                    continue
                
                mapping_s_i = self.mapping[sent_idx]
                for seg_idx in mapping_s_i:
                    if self.data_utils.debug and seg_idx >= 256:
                        do_break = True
                        break

                    mapping_g_i = mapping_s_i[seg_idx]
                    for t_idx in mapping_g_i:
                    
                        mapping_t_i = mapping_g_i[t_idx]
                        if char_idx in mapping_t_i:
                            c_idx = mapping_t_i.index(char_idx)
                            output_idx = np.s_[seg_idx, t_idx, c_idx]
                            diac_h3 = (y_gen_diac[output_idx], y_gen_tanween[output_idx], y_gen_shadda[output_idx])
                            diac_char_i = HARAKAT_MAP.index(diac_h3)
                            if c_idx < 13 and diac_char_i != 0:
                                char_vote_diacritic.append(diac_char_i)
                
                if do_break:
                    break
                if len(char_vote_diacritic) > 0:
                    char_mv_diac = self.count_votes(char_vote_diacritic)
                    diacritized_line += shakkel_char(*HARAKAT_MAP[char_mv_diac])
                    diacritics_pred[sent_idx, char_idx] = char_mv_diac
                else:
                    diacritics_pred[sent_idx, char_idx] = 0
            if do_break:
                break
            
            diacritized_lines += [diacritized_line.strip()]

        print(f'[INFO] Cutting stats from {len(diacritics_pred)} to {count_processed_sents}')
        extra = {
            'diac_pred': diacritics_pred[:count_processed_sents],
        }
        return diacritized_lines, extra