Spaces:
Running
Running
File size: 7,075 Bytes
6650ee4 ccf7d04 7055307 6650ee4 777c2c7 0d2d09d 41127cc 2e45345 6650ee4 777c2c7 6650ee4 7055307 3c305fd 7055307 3c305fd 5628a76 3c305fd 6650ee4 777c2c7 5d73a55 777c2c7 5628a76 ccf7d04 777c2c7 ccf7d04 777c2c7 6650ee4 777c2c7 41127cc 5628a76 41127cc 7055307 6650ee4 19f082d 6650ee4 2e45345 6650ee4 19f082d 6650ee4 5628a76 2e45345 6650ee4 0d2d09d 6650ee4 5628a76 6650ee4 ccf7d04 5628a76 6650ee4 7055307 5628a76 5d73a55 2e45345 838a4fb 777c2c7 5d73a55 7055307 6650ee4 7055307 6650ee4 777c2c7 6650ee4 5d73a55 6650ee4 777c2c7 6650ee4 838a4fb b9e1d94 5628a76 5d73a55 838a4fb 5d73a55 41127cc 838a4fb 5628a76 41127cc b9e1d94 838a4fb 7055307 6650ee4 777c2c7 6650ee4 5628a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json
import arxiv
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
retrieve_results = 10
show_examples = False
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
generate_kwargs = dict(
temperature = None,
max_new_tokens = 512,
top_p = None,
do_sample = False,
)
## RAG Model
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
try:
gr.Info("Setting up retriever, please wait...")
rag_initial_output = RAG.search("what is Mistral?", k = 1)
gr.Info("Retriever working successfully!")
except:
gr.Warning("Retriever not working!")
## Header
mark_text = '# 🔍 Search Results\n'
header_text = "# ArXiv CS RAG \n"
try:
with open("README.md", "r") as f:
mdfile = f.read()
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
match = re.search(date_pattern, mdfile)
date = match.group().split(': ')[1]
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
header_text += f'Index Last Updated: {formatted_date}\n'
index_info = f"Semantic Search - up to {formatted_date}"
except:
index_info = "Semantic Search"
database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
## Arxiv API
arx_client = arxiv.Client()
is_arxiv_available = True
check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results)
if len(check_arxiv_result) == 0:
is_arxiv_available = False
print("Arxiv search not working, switching to default search ...")
database_choices = [index_info]
## Show examples (disabled)
if show_examples:
with open("sample_outputs.json", "r") as f:
sample_outputs = json.load(f)
output_placeholder = sample_outputs['output_placeholder']
md_text_initial = sample_outputs['search_placeholder']
else:
output_placeholder = None
md_text_initial = ''
def rag_cleaner(inp):
rank = inp['rank']
title = inp['document_metadata']['title']
content = inp['content']
date = inp['document_metadata']['_time']
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
if formatted:
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
message = f"Question: {question}"
if 'mistralai' in llm_model_picked:
return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
elif 'gemma' in llm_model_picked:
return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
def get_references(question, retriever, k = retrieve_results):
rag_out = retriever.search(query=question, k=k)
return rag_out
def get_rag(message):
return get_references(message, RAG)
with gr.Blocks(theme = gr.themes.Soft()) as demo:
header = gr.Markdown(header_text)
with gr.Group():
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
with gr.Accordion("Advanced Settings", open=False):
with gr.Row(equal_height = True):
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
input = gr.Textbox(show_label = False, visible = False)
gr_md = gr.Markdown(mark_text + md_text_initial)
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
prompt_text_from_data = ""
database_to_use = database_choice
if database_choice == index_info:
rag_out = get_rag(message)
else:
arxiv_search_success = True
try:
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
if len(rag_out) == 0:
arxiv_search_success = False
except:
arxiv_search_success = False
if not arxiv_search_success:
gr.Warning("Arxiv Search not working, switching to semantic search ...")
rag_out = get_rag(message)
database_to_use = index_info
md_text_updated = mark_text
for i in range(retrieve_results):
rag_answer = rag_out[i]
if i < llm_results_use:
md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
prompt_text_from_data += f"{i+1}. {prompt_text}"
else:
md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
md_text_updated += md_text_paper
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
return md_text_updated, prompt
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
model_disabled_text = "LLM Model is disabled"
output = ""
if llm_model_picked == 'None':
if stream_outputs:
for out in model_disabled_text:
output += out
yield output
return output
else:
return model_disabled_text
client = InferenceClient(llm_model_picked)
try:
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
except:
gr.Warning("LLM Inference rate limit reached, try again later!")
return ""
if stream_outputs:
for response in stream:
output += response
yield output
return output
else:
return stream
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
demo.queue().launch() |