File size: 16,739 Bytes
1cc5e47
 
dd962df
 
1cc5e47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np


# Constants

class Constants:
    PAD_WORD = '<blank>'
    UNK_WORD = '<unk>'
    BOS_WORD = '<s>'
    EOS_WORD = '</s>'

# Layers


class EncoderLayer(nn.Module):
    ''' Compose with two layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(
            n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(
            d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, slf_attn_mask=None):
        enc_output, enc_slf_attn = self.slf_attn(
            enc_input, enc_input, enc_input, mask=slf_attn_mask)
        enc_output = self.pos_ffn(enc_output)
        return enc_output, enc_slf_attn


class DecoderLayer(nn.Module):
    ''' Compose with three layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        super(DecoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(
            n_head, d_model, d_k, d_v, dropout=dropout)
        self.enc_attn = MultiHeadAttention(
            n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(
            d_model, d_inner, dropout=dropout)

    def forward(
            self, dec_input, enc_output,
            slf_attn_mask=None, dec_enc_attn_mask=None):
        dec_output, dec_slf_attn = self.slf_attn(
            dec_input, dec_input, dec_input, mask=slf_attn_mask)
        dec_output, dec_enc_attn = self.enc_attn(
            dec_output, enc_output, enc_output, mask=dec_enc_attn_mask)
        dec_output = self.pos_ffn(dec_output)
        return dec_output, dec_slf_attn, dec_enc_attn


# Models

def get_pad_mask(seq, pad_idx):
    return (seq != pad_idx).unsqueeze(-2)


def get_subsequent_mask(seq):
    ''' For masking out the subsequent info. '''
    sz_b, len_s = seq.size()
    subsequent_mask = (1 - torch.triu(
        torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
    return subsequent_mask


class PositionalEncoding(nn.Module):

    def __init__(self, d_hid, n_position=200):
        super(PositionalEncoding, self).__init__()

        # Not a parameter
        self.register_buffer(
            'pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))

    def _get_sinusoid_encoding_table(self, n_position, d_hid):
        ''' Sinusoid position encoding table '''
        # TODO: make it with torch instead of numpy

        def get_position_angle_vec(position):
            return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]

        sinusoid_table = np.array([get_position_angle_vec(pos_i)
                                  for pos_i in range(n_position)])
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

        return torch.FloatTensor(sinusoid_table).unsqueeze(0)

    def forward(self, x):
        return x + self.pos_table[:, :x.size(1)].clone().detach()


class Encoder(nn.Module):
    ''' A encoder model with self attention mechanism. '''

    def __init__(
            self, n_src_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
            d_model, d_inner, pad_idx, dropout=0.1, n_position=200):

        super().__init__()

        self.src_word_emb = nn.Embedding(
            n_src_vocab, d_word_vec, padding_idx=pad_idx)
        self.position_enc = PositionalEncoding(
            d_word_vec, n_position=n_position)
        self.dropout = nn.Dropout(p=dropout)
        self.layer_stack = nn.ModuleList([
            EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, src_seq, src_mask, return_attns=False):

        enc_slf_attn_list = []

        # -- Forward

        enc_output = self.dropout(
            self.position_enc(self.src_word_emb(src_seq)))
        enc_output = self.layer_norm(enc_output)

        for enc_layer in self.layer_stack:
            enc_output, enc_slf_attn = enc_layer(
                enc_output, slf_attn_mask=src_mask)
            enc_slf_attn_list += [enc_slf_attn] if return_attns else []

        if return_attns:
            return enc_output, enc_slf_attn_list
        return enc_output,


class Decoder(nn.Module):
    ''' A decoder model with self attention mechanism. '''

    def __init__(
            self, n_trg_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
            d_model, d_inner, pad_idx, n_position=200, dropout=0.1):

        super().__init__()

        self.trg_word_emb = nn.Embedding(
            n_trg_vocab, d_word_vec, padding_idx=pad_idx)
        self.position_enc = PositionalEncoding(
            d_word_vec, n_position=n_position)
        self.dropout = nn.Dropout(p=dropout)
        self.layer_stack = nn.ModuleList([
            DecoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, trg_seq, trg_mask, enc_output, src_mask, return_attns=False):

        dec_slf_attn_list, dec_enc_attn_list = [], []

        # -- Forward
        dec_output = self.dropout(
            self.position_enc(self.trg_word_emb(trg_seq)))
        dec_output = self.layer_norm(dec_output)

        for dec_layer in self.layer_stack:
            dec_output, dec_slf_attn, dec_enc_attn = dec_layer(
                dec_output, enc_output, slf_attn_mask=trg_mask, dec_enc_attn_mask=src_mask)
            dec_slf_attn_list += [dec_slf_attn] if return_attns else []
            dec_enc_attn_list += [dec_enc_attn] if return_attns else []

        if return_attns:
            return dec_output, dec_slf_attn_list, dec_enc_attn_list
        return dec_output,


class Transformer(nn.Module):
    ''' A sequence to sequence model with attention mechanism. '''

    def __init__(
            self, n_src_vocab, n_trg_vocab, src_pad_idx, trg_pad_idx,
            d_word_vec=512, d_model=512, d_inner=2048,
            n_layers=6, n_head=8, d_k=64, d_v=64, dropout=0.1, n_position=200,
            trg_emb_prj_weight_sharing=True, emb_src_trg_weight_sharing=True):

        super().__init__()

        self.src_pad_idx, self.trg_pad_idx = src_pad_idx, trg_pad_idx

        self.encoder = Encoder(
            n_src_vocab=n_src_vocab, n_position=n_position,
            d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
            n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
            pad_idx=src_pad_idx, dropout=dropout)

        self.decoder = Decoder(
            n_trg_vocab=n_trg_vocab, n_position=n_position,
            d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
            n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
            pad_idx=trg_pad_idx, dropout=dropout)

        self.trg_word_prj = nn.Linear(d_model, n_trg_vocab, bias=False)

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

        assert d_model == d_word_vec, \
            'To facilitate the residual connections, \
         the dimensions of all module outputs shall be the same.'

        self.x_logit_scale = 1.
        if trg_emb_prj_weight_sharing:
            # Share the weight between target word embedding & last dense layer
            self.trg_word_prj.weight = self.decoder.trg_word_emb.weight
            self.x_logit_scale = (d_model ** -0.5)

        if emb_src_trg_weight_sharing:
            self.encoder.src_word_emb.weight = self.decoder.trg_word_emb.weight

    def forward(self, src_seq, trg_seq):

        src_mask = get_pad_mask(src_seq, self.src_pad_idx)
        trg_mask = get_pad_mask(
            trg_seq, self.trg_pad_idx) & get_subsequent_mask(trg_seq)

        enc_output, *_ = self.encoder(src_seq, src_mask)
        dec_output, *_ = self.decoder(trg_seq, trg_mask, enc_output, src_mask)
        seq_logit = self.trg_word_prj(dec_output) * self.x_logit_scale

        return seq_logit.view(-1, seq_logit.size(2))


# Modules

class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)

    def forward(self, q, k, v, mask=None):

        attn = torch.matmul(q / self.temperature, k.transpose(2, 3))

        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)

        attn = self.dropout(F.softmax(attn, dim=-1))
        output = torch.matmul(attn, v)

        return output, attn


# Optim

class ScheduledOptim():
    '''A simple wrapper class for learning rate scheduling'''

    def __init__(self, optimizer, init_lr, d_model, n_warmup_steps):
        self._optimizer = optimizer
        self.init_lr = init_lr
        self.d_model = d_model
        self.n_warmup_steps = n_warmup_steps
        self.n_steps = 0

    def step_and_update_lr(self):
        "Step with the inner optimizer"
        self._update_learning_rate()
        self._optimizer.step()

    def zero_grad(self):
        "Zero out the gradients with the inner optimizer"
        self._optimizer.zero_grad()

    def _get_lr_scale(self):
        d_model = self.d_model
        n_steps, n_warmup_steps = self.n_steps, self.n_warmup_steps
        return (d_model ** -0.5) * min(n_steps ** (-0.5), n_steps * n_warmup_steps ** (-1.5))

    def _update_learning_rate(self):
        ''' Learning rate scheduling per step '''

        self.n_steps += 1
        lr = self.init_lr * self._get_lr_scale()

        for param_group in self._optimizer.param_groups:
            param_group['lr'] = lr


# SubLayers

class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, q, k, v, mask=None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q

        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1)   # For head axis broadcasting.

        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        q = self.dropout(self.fc(q))
        q += residual

        q = self.layer_norm(q)

        return q, attn


class PositionwiseFeedForward(nn.Module):
    ''' A two-feed-forward-layer module '''

    def __init__(self, d_in, d_hid, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Linear(d_in, d_hid)  # position-wise
        self.w_2 = nn.Linear(d_hid, d_in)  # position-wise
        self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):

        residual = x

        x = self.w_2(F.relu(self.w_1(x)))
        x = self.dropout(x)
        x += residual

        x = self.layer_norm(x)

        return x


# Translator

class Translator(nn.Module):
    ''' Load a trained model and translate in beam search fashion. '''

    def __init__(
            self, model, beam_size, max_seq_len,
            src_pad_idx, trg_pad_idx, trg_bos_idx, trg_eos_idx):

        super(Translator, self).__init__()

        self.alpha = 0.7
        self.beam_size = beam_size
        self.max_seq_len = max_seq_len
        self.src_pad_idx = src_pad_idx
        self.trg_bos_idx = trg_bos_idx
        self.trg_eos_idx = trg_eos_idx

        self.model = model
        self.model.eval()

        self.register_buffer('init_seq', torch.LongTensor([[trg_bos_idx]]))
        self.register_buffer(
            'blank_seqs',
            torch.full((beam_size, max_seq_len), trg_pad_idx, dtype=torch.long))
        self.blank_seqs[:, 0] = self.trg_bos_idx
        self.register_buffer(
            'len_map',
            torch.arange(1, max_seq_len + 1, dtype=torch.long).unsqueeze(0))

    def _model_decode(self, trg_seq, enc_output, src_mask):
        trg_mask = get_subsequent_mask(trg_seq)
        dec_output, * \
            _ = self.model.decoder(trg_seq, trg_mask, enc_output, src_mask)
        return F.softmax(self.model.trg_word_prj(dec_output), dim=-1)

    def _get_init_state(self, src_seq, src_mask):
        beam_size = self.beam_size

        enc_output, *_ = self.model.encoder(src_seq, src_mask)
        dec_output = self._model_decode(self.init_seq, enc_output, src_mask)

        best_k_probs, best_k_idx = dec_output[:, -1, :].topk(beam_size)

        scores = torch.log(best_k_probs).view(beam_size)
        gen_seq = self.blank_seqs.clone().detach()
        gen_seq[:, 1] = best_k_idx[0]
        enc_output = enc_output.repeat(beam_size, 1, 1)
        return enc_output, gen_seq, scores

    def _get_the_best_score_and_idx(self, gen_seq, dec_output, scores, step):
        assert len(scores.size()) == 1

        beam_size = self.beam_size

        # Get k candidates for each beam, k^2 candidates in total.
        best_k2_probs, best_k2_idx = dec_output[:, -1, :].topk(beam_size)

        # Include the previous scores.
        scores = torch.log(best_k2_probs).view(
            beam_size, -1) + scores.view(beam_size, 1)

        # Get the best k candidates from k^2 candidates.
        scores, best_k_idx_in_k2 = scores.view(-1).topk(beam_size)

        # Get the corresponding positions of the best k candidiates.
        best_k_r_idxs, best_k_c_idxs = best_k_idx_in_k2 // beam_size, best_k_idx_in_k2 % beam_size
        best_k_idx = best_k2_idx[best_k_r_idxs, best_k_c_idxs]

        # Copy the corresponding previous tokens.
        gen_seq[:, :step] = gen_seq[best_k_r_idxs, :step]
        # Set the best tokens in this beam search step
        gen_seq[:, step] = best_k_idx

        return gen_seq, scores

    def translate_sentence(self, src_seq):
        # Only accept batch size equals to 1 in this function.
        # TODO: expand to batch operation.
        assert src_seq.size(0) == 1

        src_pad_idx, trg_eos_idx = self.src_pad_idx, self.trg_eos_idx
        max_seq_len, beam_size, alpha = self.max_seq_len, self.beam_size, self.alpha

        with torch.no_grad():
            src_mask = get_pad_mask(src_seq, src_pad_idx)
            enc_output, gen_seq, scores = self._get_init_state(
                src_seq, src_mask)

            ans_idx = 0   # default
            for step in range(2, max_seq_len):    # decode up to max length
                dec_output = self._model_decode(
                    gen_seq[:, :step], enc_output, src_mask)
                gen_seq, scores = self._get_the_best_score_and_idx(
                    gen_seq, dec_output, scores, step)

                # Check if all path finished
                # -- locate the eos in the generated sequences
                eos_locs = gen_seq == trg_eos_idx
                # -- replace the eos with its position for the length penalty use
                seq_lens, _ = self.len_map.masked_fill(
                    ~eos_locs, max_seq_len).min(1)
                # -- check if all beams contain eos
                if (eos_locs.sum(1) > 0).sum(0).item() == beam_size:
                    # TODO: Try different terminate conditions.
                    _, ans_idx = scores.div(seq_lens.float() ** alpha).max(0)
                    ans_idx = ans_idx.item()
                    break
        return gen_seq[ans_idx][:seq_lens[ans_idx]].tolist()