Spaces:
Sleeping
Sleeping
File size: 16,739 Bytes
1cc5e47 dd962df 1cc5e47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
# Constants
class Constants:
PAD_WORD = '<blank>'
UNK_WORD = '<unk>'
BOS_WORD = '<s>'
EOS_WORD = '</s>'
# Layers
class EncoderLayer(nn.Module):
''' Compose with two layers '''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
super(EncoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(
n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(
d_model, d_inner, dropout=dropout)
def forward(self, enc_input, slf_attn_mask=None):
enc_output, enc_slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask)
enc_output = self.pos_ffn(enc_output)
return enc_output, enc_slf_attn
class DecoderLayer(nn.Module):
''' Compose with three layers '''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
super(DecoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(
n_head, d_model, d_k, d_v, dropout=dropout)
self.enc_attn = MultiHeadAttention(
n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(
d_model, d_inner, dropout=dropout)
def forward(
self, dec_input, enc_output,
slf_attn_mask=None, dec_enc_attn_mask=None):
dec_output, dec_slf_attn = self.slf_attn(
dec_input, dec_input, dec_input, mask=slf_attn_mask)
dec_output, dec_enc_attn = self.enc_attn(
dec_output, enc_output, enc_output, mask=dec_enc_attn_mask)
dec_output = self.pos_ffn(dec_output)
return dec_output, dec_slf_attn, dec_enc_attn
# Models
def get_pad_mask(seq, pad_idx):
return (seq != pad_idx).unsqueeze(-2)
def get_subsequent_mask(seq):
''' For masking out the subsequent info. '''
sz_b, len_s = seq.size()
subsequent_mask = (1 - torch.triu(
torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
return subsequent_mask
class PositionalEncoding(nn.Module):
def __init__(self, d_hid, n_position=200):
super(PositionalEncoding, self).__init__()
# Not a parameter
self.register_buffer(
'pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
def _get_sinusoid_encoding_table(self, n_position, d_hid):
''' Sinusoid position encoding table '''
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_position_angle_vec(pos_i)
for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
def forward(self, x):
return x + self.pos_table[:, :x.size(1)].clone().detach()
class Encoder(nn.Module):
''' A encoder model with self attention mechanism. '''
def __init__(
self, n_src_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
d_model, d_inner, pad_idx, dropout=0.1, n_position=200):
super().__init__()
self.src_word_emb = nn.Embedding(
n_src_vocab, d_word_vec, padding_idx=pad_idx)
self.position_enc = PositionalEncoding(
d_word_vec, n_position=n_position)
self.dropout = nn.Dropout(p=dropout)
self.layer_stack = nn.ModuleList([
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
for _ in range(n_layers)])
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, src_seq, src_mask, return_attns=False):
enc_slf_attn_list = []
# -- Forward
enc_output = self.dropout(
self.position_enc(self.src_word_emb(src_seq)))
enc_output = self.layer_norm(enc_output)
for enc_layer in self.layer_stack:
enc_output, enc_slf_attn = enc_layer(
enc_output, slf_attn_mask=src_mask)
enc_slf_attn_list += [enc_slf_attn] if return_attns else []
if return_attns:
return enc_output, enc_slf_attn_list
return enc_output,
class Decoder(nn.Module):
''' A decoder model with self attention mechanism. '''
def __init__(
self, n_trg_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
d_model, d_inner, pad_idx, n_position=200, dropout=0.1):
super().__init__()
self.trg_word_emb = nn.Embedding(
n_trg_vocab, d_word_vec, padding_idx=pad_idx)
self.position_enc = PositionalEncoding(
d_word_vec, n_position=n_position)
self.dropout = nn.Dropout(p=dropout)
self.layer_stack = nn.ModuleList([
DecoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
for _ in range(n_layers)])
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, trg_seq, trg_mask, enc_output, src_mask, return_attns=False):
dec_slf_attn_list, dec_enc_attn_list = [], []
# -- Forward
dec_output = self.dropout(
self.position_enc(self.trg_word_emb(trg_seq)))
dec_output = self.layer_norm(dec_output)
for dec_layer in self.layer_stack:
dec_output, dec_slf_attn, dec_enc_attn = dec_layer(
dec_output, enc_output, slf_attn_mask=trg_mask, dec_enc_attn_mask=src_mask)
dec_slf_attn_list += [dec_slf_attn] if return_attns else []
dec_enc_attn_list += [dec_enc_attn] if return_attns else []
if return_attns:
return dec_output, dec_slf_attn_list, dec_enc_attn_list
return dec_output,
class Transformer(nn.Module):
''' A sequence to sequence model with attention mechanism. '''
def __init__(
self, n_src_vocab, n_trg_vocab, src_pad_idx, trg_pad_idx,
d_word_vec=512, d_model=512, d_inner=2048,
n_layers=6, n_head=8, d_k=64, d_v=64, dropout=0.1, n_position=200,
trg_emb_prj_weight_sharing=True, emb_src_trg_weight_sharing=True):
super().__init__()
self.src_pad_idx, self.trg_pad_idx = src_pad_idx, trg_pad_idx
self.encoder = Encoder(
n_src_vocab=n_src_vocab, n_position=n_position,
d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
pad_idx=src_pad_idx, dropout=dropout)
self.decoder = Decoder(
n_trg_vocab=n_trg_vocab, n_position=n_position,
d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
pad_idx=trg_pad_idx, dropout=dropout)
self.trg_word_prj = nn.Linear(d_model, n_trg_vocab, bias=False)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
assert d_model == d_word_vec, \
'To facilitate the residual connections, \
the dimensions of all module outputs shall be the same.'
self.x_logit_scale = 1.
if trg_emb_prj_weight_sharing:
# Share the weight between target word embedding & last dense layer
self.trg_word_prj.weight = self.decoder.trg_word_emb.weight
self.x_logit_scale = (d_model ** -0.5)
if emb_src_trg_weight_sharing:
self.encoder.src_word_emb.weight = self.decoder.trg_word_emb.weight
def forward(self, src_seq, trg_seq):
src_mask = get_pad_mask(src_seq, self.src_pad_idx)
trg_mask = get_pad_mask(
trg_seq, self.trg_pad_idx) & get_subsequent_mask(trg_seq)
enc_output, *_ = self.encoder(src_seq, src_mask)
dec_output, *_ = self.decoder(trg_seq, trg_mask, enc_output, src_mask)
seq_logit = self.trg_word_prj(dec_output) * self.x_logit_scale
return seq_logit.view(-1, seq_logit.size(2))
# Modules
class ScaledDotProductAttention(nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e9)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
# Optim
class ScheduledOptim():
'''A simple wrapper class for learning rate scheduling'''
def __init__(self, optimizer, init_lr, d_model, n_warmup_steps):
self._optimizer = optimizer
self.init_lr = init_lr
self.d_model = d_model
self.n_warmup_steps = n_warmup_steps
self.n_steps = 0
def step_and_update_lr(self):
"Step with the inner optimizer"
self._update_learning_rate()
self._optimizer.step()
def zero_grad(self):
"Zero out the gradients with the inner optimizer"
self._optimizer.zero_grad()
def _get_lr_scale(self):
d_model = self.d_model
n_steps, n_warmup_steps = self.n_steps, self.n_warmup_steps
return (d_model ** -0.5) * min(n_steps ** (-0.5), n_steps * n_warmup_steps ** (-1.5))
def _update_learning_rate(self):
''' Learning rate scheduling per step '''
self.n_steps += 1
lr = self.init_lr * self._get_lr_scale()
for param_group in self._optimizer.param_groups:
param_group['lr'] = lr
# SubLayers
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
residual = q
# Pass through the pre-attention projection: b x lq x (n*dv)
# Separate different heads: b x lq x n x dv
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# Transpose for attention dot product: b x n x lq x dv
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1) # For head axis broadcasting.
q, attn = self.attention(q, k, v, mask=mask)
# Transpose to move the head dimension back: b x lq x n x dv
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
q = self.dropout(self.fc(q))
q += residual
q = self.layer_norm(q)
return q, attn
class PositionwiseFeedForward(nn.Module):
''' A two-feed-forward-layer module '''
def __init__(self, d_in, d_hid, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = self.w_2(F.relu(self.w_1(x)))
x = self.dropout(x)
x += residual
x = self.layer_norm(x)
return x
# Translator
class Translator(nn.Module):
''' Load a trained model and translate in beam search fashion. '''
def __init__(
self, model, beam_size, max_seq_len,
src_pad_idx, trg_pad_idx, trg_bos_idx, trg_eos_idx):
super(Translator, self).__init__()
self.alpha = 0.7
self.beam_size = beam_size
self.max_seq_len = max_seq_len
self.src_pad_idx = src_pad_idx
self.trg_bos_idx = trg_bos_idx
self.trg_eos_idx = trg_eos_idx
self.model = model
self.model.eval()
self.register_buffer('init_seq', torch.LongTensor([[trg_bos_idx]]))
self.register_buffer(
'blank_seqs',
torch.full((beam_size, max_seq_len), trg_pad_idx, dtype=torch.long))
self.blank_seqs[:, 0] = self.trg_bos_idx
self.register_buffer(
'len_map',
torch.arange(1, max_seq_len + 1, dtype=torch.long).unsqueeze(0))
def _model_decode(self, trg_seq, enc_output, src_mask):
trg_mask = get_subsequent_mask(trg_seq)
dec_output, * \
_ = self.model.decoder(trg_seq, trg_mask, enc_output, src_mask)
return F.softmax(self.model.trg_word_prj(dec_output), dim=-1)
def _get_init_state(self, src_seq, src_mask):
beam_size = self.beam_size
enc_output, *_ = self.model.encoder(src_seq, src_mask)
dec_output = self._model_decode(self.init_seq, enc_output, src_mask)
best_k_probs, best_k_idx = dec_output[:, -1, :].topk(beam_size)
scores = torch.log(best_k_probs).view(beam_size)
gen_seq = self.blank_seqs.clone().detach()
gen_seq[:, 1] = best_k_idx[0]
enc_output = enc_output.repeat(beam_size, 1, 1)
return enc_output, gen_seq, scores
def _get_the_best_score_and_idx(self, gen_seq, dec_output, scores, step):
assert len(scores.size()) == 1
beam_size = self.beam_size
# Get k candidates for each beam, k^2 candidates in total.
best_k2_probs, best_k2_idx = dec_output[:, -1, :].topk(beam_size)
# Include the previous scores.
scores = torch.log(best_k2_probs).view(
beam_size, -1) + scores.view(beam_size, 1)
# Get the best k candidates from k^2 candidates.
scores, best_k_idx_in_k2 = scores.view(-1).topk(beam_size)
# Get the corresponding positions of the best k candidiates.
best_k_r_idxs, best_k_c_idxs = best_k_idx_in_k2 // beam_size, best_k_idx_in_k2 % beam_size
best_k_idx = best_k2_idx[best_k_r_idxs, best_k_c_idxs]
# Copy the corresponding previous tokens.
gen_seq[:, :step] = gen_seq[best_k_r_idxs, :step]
# Set the best tokens in this beam search step
gen_seq[:, step] = best_k_idx
return gen_seq, scores
def translate_sentence(self, src_seq):
# Only accept batch size equals to 1 in this function.
# TODO: expand to batch operation.
assert src_seq.size(0) == 1
src_pad_idx, trg_eos_idx = self.src_pad_idx, self.trg_eos_idx
max_seq_len, beam_size, alpha = self.max_seq_len, self.beam_size, self.alpha
with torch.no_grad():
src_mask = get_pad_mask(src_seq, src_pad_idx)
enc_output, gen_seq, scores = self._get_init_state(
src_seq, src_mask)
ans_idx = 0 # default
for step in range(2, max_seq_len): # decode up to max length
dec_output = self._model_decode(
gen_seq[:, :step], enc_output, src_mask)
gen_seq, scores = self._get_the_best_score_and_idx(
gen_seq, dec_output, scores, step)
# Check if all path finished
# -- locate the eos in the generated sequences
eos_locs = gen_seq == trg_eos_idx
# -- replace the eos with its position for the length penalty use
seq_lens, _ = self.len_map.masked_fill(
~eos_locs, max_seq_len).min(1)
# -- check if all beams contain eos
if (eos_locs.sum(1) > 0).sum(0).item() == beam_size:
# TODO: Try different terminate conditions.
_, ans_idx = scores.div(seq_lens.float() ** alpha).max(0)
ans_idx = ans_idx.item()
break
return gen_seq[ans_idx][:seq_lens[ans_idx]].tolist()
|