Spaces:
Runtime error
Runtime error
File size: 4,763 Bytes
61781c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings
from langchain import HuggingFaceHub
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from htmlTemplates import bot_template, user_template, css
from transformers import pipeline
import sys
import os
from dotenv import load_dotenv
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
def get_pdf_text(pdf_files):
text = ""
for pdf_file in pdf_files:
reader = PdfReader(pdf_file)
for page in reader.pages:
text += page.extract_text()
return text
def get_chunk_text(text):
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 1000,
chunk_overlap = 200,
length_function = len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
# For OpenAI Embeddings
#embeddings = OpenAIEmbeddings()
# For Huggingface Embeddings
#embeddings = HuggingFaceInstructEmbeddings(model_name = "hkunlp/instructor-xl")
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vectorstore = FAISS.from_texts(texts = text_chunks, embedding = embeddings)
return vectorstore
def get_conversation_chain(vector_store):
# OpenAI Model
#llm = ChatOpenAI()
#HuggingFace Model
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl")
#llm = HuggingFaceHub(repo_id="tiiuae/falcon-40b-instruct", model_kwargs={"temperature":0.5, "max_length":512}) #出现超时timed out错误
#llm = HuggingFaceHub(repo_id="meta-llama/Llama-2-70b-hf", model_kwargs={"min_length":100, "max_length":1024,"temperature":0.1})
#repo_id="HuggingFaceH4/starchat-beta"
#llm = HuggingFaceHub(repo_id=repo_id,
# model_kwargs={"min_length":100,
# "max_new_tokens":1024, "do_sample":True,
# "temperature":0.1,
# "top_k":50,
# "top_p":0.95, "eos_token_id":49155})
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm = llm,
retriever = vector_store.as_retriever(),
memory = memory
)
print("***Start of printing Conversation_Chain***")
print(conversation_chain)
print("***End of printing Conversation_Chain***")
st.write("***Start of printing Conversation_Chain***")
st.write(conversation_chain)
st.write("***End of printing Conversation_Chain***")
return conversation_chain
def handle_user_input(question):
response = st.session_state.conversation({'question':question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title='Chat with Your own PDFs', page_icon=':books:')
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header('Chat with Your own PDFs :books:')
question = st.text_input("Ask anything to your PDF: ")
if question:
handle_user_input(question)
with st.sidebar:
st.subheader("Upload your Documents Here: ")
pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
if st.button("OK"):
with st.spinner("Processing your PDFs..."):
# Get PDF Text
raw_text = get_pdf_text(pdf_files)
# Get Text Chunks
text_chunks = get_chunk_text(raw_text)
# Create Vector Store
vector_store = get_vector_store(text_chunks)
st.write("DONE")
# Create conversation chain
st.session_state.conversation = get_conversation_chain(vector_store)
if __name__ == '__main__':
main() |