File size: 7,756 Bytes
b699122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""Weaviate-specific serializers for LlamaIndex data structures.

Contain conversion to and from dataclasses that LlamaIndex uses.

"""

import json
from dataclasses import field
from typing import Any, Dict, List, Optional, cast

from gpt_index.data_structs.data_structs_v2 import Node
from gpt_index.data_structs.node_v2 import DocumentRelationship
from gpt_index.readers.weaviate.utils import (
    get_by_id,
    parse_get_response,
    validate_client,
)
from gpt_index.utils import get_new_id
from gpt_index.vector_stores.types import VectorStoreQuery, VectorStoreQueryMode

import logging

_logger = logging.getLogger(__name__)

NODE_SCHEMA: List[Dict] = [
    {
        "dataType": ["string"],
        "description": "Text property",
        "name": "text",
    },
    {
        "dataType": ["string"],
        "description": "Document id",
        "name": "doc_id",
    },
    {
        "dataType": ["string"],
        "description": "extra_info (in JSON)",
        "name": "extra_info",
    },
    {
        "dataType": ["string"],
        "description": "The ref_doc_id of the Node",
        "name": "ref_doc_id",
    },
    {
        "dataType": ["string"],
        "description": "node_info (in JSON)",
        "name": "node_info",
    },
    {
        "dataType": ["string"],
        "description": "The hash of the Document",
        "name": "doc_hash",
    },
    {
        "dataType": ["string"],
        "description": "The relationships of the node (in JSON)",
        "name": "relationships",
    },
]


def _get_by_id(client: Any, object_id: str, class_prefix: str) -> Dict:
    """Get entry by id."""
    validate_client(client)
    class_name = _class_name(class_prefix)
    properties = NODE_SCHEMA
    prop_names = [p["name"] for p in properties]
    entry = get_by_id(client, object_id, class_name, prop_names)
    return entry


def create_schema(client: Any, class_prefix: str) -> None:
    """Create schema."""
    validate_client(client)
    # first check if schema exists
    schema = client.schema.get()
    classes = schema["classes"]
    existing_class_names = {c["class"] for c in classes}
    # if schema already exists, don't create
    class_name = _class_name(class_prefix)
    if class_name in existing_class_names:
        return

    properties = NODE_SCHEMA
    class_obj = {
        "class": _class_name(class_prefix),  # <= note the capital "A".
        "description": f"Class for {class_name}",
        "properties": properties,
    }
    client.schema.create_class(class_obj)


def weaviate_query(
    client: Any,
    class_prefix: str,
    query_spec: VectorStoreQuery,
) -> List[Node]:
    """Convert to LlamaIndex list."""
    validate_client(client)

    class_name = _class_name(class_prefix)
    prop_names = [p["name"] for p in NODE_SCHEMA]
    vector = query_spec.query_embedding

    # build query
    query = client.query.get(class_name, prop_names).with_additional(["id", "vector"])
    if query_spec.mode == VectorStoreQueryMode.DEFAULT:
        _logger.debug("Using vector search")
        if vector is not None:
            query = query.with_near_vector(
                {
                    "vector": vector,
                }
            )
    elif query_spec.mode == VectorStoreQueryMode.HYBRID:
        _logger.debug(f"Using hybrid search with alpha {query_spec.alpha}")
        query = query.with_hybrid(
            query=query_spec.query_str,
            alpha=query_spec.alpha,
            vector=vector,
        )
    query = query.with_limit(query_spec.similarity_top_k)
    _logger.debug(f"Using limit of {query_spec.similarity_top_k}")

    # execute query
    query_result = query.do()

    # parse results
    parsed_result = parse_get_response(query_result)
    entries = parsed_result[class_name]
    results = [_to_node(entry) for entry in entries]
    return results


def _class_name(class_prefix: str) -> str:
    """Return class name."""
    return f"{class_prefix}_Node"


def _to_node(entry: Dict) -> Node:
    """Convert to Node."""
    extra_info_str = entry["extra_info"]
    if extra_info_str == "":
        extra_info = None
    else:
        extra_info = json.loads(extra_info_str)

    node_info_str = entry["node_info"]
    if node_info_str == "":
        node_info = None
    else:
        node_info = json.loads(node_info_str)

    relationships_str = entry["relationships"]
    relationships: Dict[DocumentRelationship, str]
    if relationships_str == "":
        relationships = field(default_factory=dict)
    else:
        relationships = {
            DocumentRelationship(k): v for k, v in json.loads(relationships_str).items()
        }

    return Node(
        text=entry["text"],
        doc_id=entry["doc_id"],
        embedding=entry["_additional"]["vector"],
        extra_info=extra_info,
        node_info=node_info,
        relationships=relationships,
    )


def _node_to_dict(node: Node) -> dict:
    node_dict = node.to_dict()
    node_dict.pop("embedding")  # NOTE: stored outside of dict

    # json-serialize the extra_info
    extra_info = node_dict.pop("extra_info")
    extra_info_str = ""
    if extra_info is not None:
        extra_info_str = json.dumps(extra_info)
    node_dict["extra_info"] = extra_info_str

    # json-serialize the node_info
    node_info = node_dict.pop("node_info")
    node_info_str = ""
    if node_info is not None:
        node_info_str = json.dumps(node_info)
    node_dict["node_info"] = node_info_str

    # json-serialize the relationships
    relationships = node_dict.pop("relationships")
    relationships_str = ""
    if relationships is not None:
        relationships_str = json.dumps(relationships)
    node_dict["relationships"] = relationships_str

    ref_doc_id = node.ref_doc_id
    if ref_doc_id is not None:
        node_dict["ref_doc_id"] = ref_doc_id
    return node_dict


def _add_node(
    client: Any, node: Node, class_prefix: str, batch: Optional[Any] = None
) -> str:
    """Add node."""
    node_dict = _node_to_dict(node)
    vector = node.embedding

    # TODO: account for existing nodes that are stored
    node_id = get_new_id(set())
    class_name = _class_name(class_prefix)

    # if batch object is provided (via a context manager), use that instead
    if batch is not None:
        batch.add_data_object(node_dict, class_name, node_id, vector)
    else:
        client.batch.add_data_object(node_dict, class_name, node_id, vector)

    return node_id


def delete_document(client: Any, ref_doc_id: str, class_prefix: str) -> None:
    """Delete entry."""
    validate_client(client)
    # make sure that each entry
    class_name = _class_name(class_prefix)
    where_filter = {
        "path": ["ref_doc_id"],
        "operator": "Equal",
        "valueString": ref_doc_id,
    }
    query = (
        client.query.get(class_name).with_additional(["id"]).with_where(where_filter)
    )

    query_result = query.do()
    parsed_result = parse_get_response(query_result)
    entries = parsed_result[class_name]
    for entry in entries:
        client.data_object.delete(entry["_additional"]["id"], class_name)


def add_node(client: Any, node: Node, class_prefix: str) -> str:
    """Convert from LlamaIndex."""
    validate_client(client)
    index_id = _add_node(client, node, class_prefix)
    client.batch.flush()
    return index_id


def add_nodes(client: Any, nodes: List[Node], class_prefix: str) -> List[str]:
    """Add nodes."""
    from weaviate import Client  # noqa: F401

    client = cast(Client, client)
    validate_client(client)
    index_ids = []
    with client.batch as batch:
        for node in nodes:
            index_id = _add_node(client, node, class_prefix, batch=batch)
            index_ids.append(index_id)
    return index_ids