Spaces:
Runtime error
Runtime error
File size: 7,756 Bytes
b699122 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""Weaviate-specific serializers for LlamaIndex data structures.
Contain conversion to and from dataclasses that LlamaIndex uses.
"""
import json
from dataclasses import field
from typing import Any, Dict, List, Optional, cast
from gpt_index.data_structs.data_structs_v2 import Node
from gpt_index.data_structs.node_v2 import DocumentRelationship
from gpt_index.readers.weaviate.utils import (
get_by_id,
parse_get_response,
validate_client,
)
from gpt_index.utils import get_new_id
from gpt_index.vector_stores.types import VectorStoreQuery, VectorStoreQueryMode
import logging
_logger = logging.getLogger(__name__)
NODE_SCHEMA: List[Dict] = [
{
"dataType": ["string"],
"description": "Text property",
"name": "text",
},
{
"dataType": ["string"],
"description": "Document id",
"name": "doc_id",
},
{
"dataType": ["string"],
"description": "extra_info (in JSON)",
"name": "extra_info",
},
{
"dataType": ["string"],
"description": "The ref_doc_id of the Node",
"name": "ref_doc_id",
},
{
"dataType": ["string"],
"description": "node_info (in JSON)",
"name": "node_info",
},
{
"dataType": ["string"],
"description": "The hash of the Document",
"name": "doc_hash",
},
{
"dataType": ["string"],
"description": "The relationships of the node (in JSON)",
"name": "relationships",
},
]
def _get_by_id(client: Any, object_id: str, class_prefix: str) -> Dict:
"""Get entry by id."""
validate_client(client)
class_name = _class_name(class_prefix)
properties = NODE_SCHEMA
prop_names = [p["name"] for p in properties]
entry = get_by_id(client, object_id, class_name, prop_names)
return entry
def create_schema(client: Any, class_prefix: str) -> None:
"""Create schema."""
validate_client(client)
# first check if schema exists
schema = client.schema.get()
classes = schema["classes"]
existing_class_names = {c["class"] for c in classes}
# if schema already exists, don't create
class_name = _class_name(class_prefix)
if class_name in existing_class_names:
return
properties = NODE_SCHEMA
class_obj = {
"class": _class_name(class_prefix), # <= note the capital "A".
"description": f"Class for {class_name}",
"properties": properties,
}
client.schema.create_class(class_obj)
def weaviate_query(
client: Any,
class_prefix: str,
query_spec: VectorStoreQuery,
) -> List[Node]:
"""Convert to LlamaIndex list."""
validate_client(client)
class_name = _class_name(class_prefix)
prop_names = [p["name"] for p in NODE_SCHEMA]
vector = query_spec.query_embedding
# build query
query = client.query.get(class_name, prop_names).with_additional(["id", "vector"])
if query_spec.mode == VectorStoreQueryMode.DEFAULT:
_logger.debug("Using vector search")
if vector is not None:
query = query.with_near_vector(
{
"vector": vector,
}
)
elif query_spec.mode == VectorStoreQueryMode.HYBRID:
_logger.debug(f"Using hybrid search with alpha {query_spec.alpha}")
query = query.with_hybrid(
query=query_spec.query_str,
alpha=query_spec.alpha,
vector=vector,
)
query = query.with_limit(query_spec.similarity_top_k)
_logger.debug(f"Using limit of {query_spec.similarity_top_k}")
# execute query
query_result = query.do()
# parse results
parsed_result = parse_get_response(query_result)
entries = parsed_result[class_name]
results = [_to_node(entry) for entry in entries]
return results
def _class_name(class_prefix: str) -> str:
"""Return class name."""
return f"{class_prefix}_Node"
def _to_node(entry: Dict) -> Node:
"""Convert to Node."""
extra_info_str = entry["extra_info"]
if extra_info_str == "":
extra_info = None
else:
extra_info = json.loads(extra_info_str)
node_info_str = entry["node_info"]
if node_info_str == "":
node_info = None
else:
node_info = json.loads(node_info_str)
relationships_str = entry["relationships"]
relationships: Dict[DocumentRelationship, str]
if relationships_str == "":
relationships = field(default_factory=dict)
else:
relationships = {
DocumentRelationship(k): v for k, v in json.loads(relationships_str).items()
}
return Node(
text=entry["text"],
doc_id=entry["doc_id"],
embedding=entry["_additional"]["vector"],
extra_info=extra_info,
node_info=node_info,
relationships=relationships,
)
def _node_to_dict(node: Node) -> dict:
node_dict = node.to_dict()
node_dict.pop("embedding") # NOTE: stored outside of dict
# json-serialize the extra_info
extra_info = node_dict.pop("extra_info")
extra_info_str = ""
if extra_info is not None:
extra_info_str = json.dumps(extra_info)
node_dict["extra_info"] = extra_info_str
# json-serialize the node_info
node_info = node_dict.pop("node_info")
node_info_str = ""
if node_info is not None:
node_info_str = json.dumps(node_info)
node_dict["node_info"] = node_info_str
# json-serialize the relationships
relationships = node_dict.pop("relationships")
relationships_str = ""
if relationships is not None:
relationships_str = json.dumps(relationships)
node_dict["relationships"] = relationships_str
ref_doc_id = node.ref_doc_id
if ref_doc_id is not None:
node_dict["ref_doc_id"] = ref_doc_id
return node_dict
def _add_node(
client: Any, node: Node, class_prefix: str, batch: Optional[Any] = None
) -> str:
"""Add node."""
node_dict = _node_to_dict(node)
vector = node.embedding
# TODO: account for existing nodes that are stored
node_id = get_new_id(set())
class_name = _class_name(class_prefix)
# if batch object is provided (via a context manager), use that instead
if batch is not None:
batch.add_data_object(node_dict, class_name, node_id, vector)
else:
client.batch.add_data_object(node_dict, class_name, node_id, vector)
return node_id
def delete_document(client: Any, ref_doc_id: str, class_prefix: str) -> None:
"""Delete entry."""
validate_client(client)
# make sure that each entry
class_name = _class_name(class_prefix)
where_filter = {
"path": ["ref_doc_id"],
"operator": "Equal",
"valueString": ref_doc_id,
}
query = (
client.query.get(class_name).with_additional(["id"]).with_where(where_filter)
)
query_result = query.do()
parsed_result = parse_get_response(query_result)
entries = parsed_result[class_name]
for entry in entries:
client.data_object.delete(entry["_additional"]["id"], class_name)
def add_node(client: Any, node: Node, class_prefix: str) -> str:
"""Convert from LlamaIndex."""
validate_client(client)
index_id = _add_node(client, node, class_prefix)
client.batch.flush()
return index_id
def add_nodes(client: Any, nodes: List[Node], class_prefix: str) -> List[str]:
"""Add nodes."""
from weaviate import Client # noqa: F401
client = cast(Client, client)
validate_client(client)
index_ids = []
with client.batch as batch:
for node in nodes:
index_id = _add_node(client, node, class_prefix, batch=batch)
index_ids.append(index_id)
return index_ids
|