Spaces:
Runtime error
Runtime error
File size: 26,250 Bytes
ec08fea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
from re import A
import time
from turtle import width
import torch
import torch.nn as nn
import torch.nn.functional as F
##new####
# https://github.com/tedyhabtegebrial/PyTorch-Trilinear-Interpolation
class TrilinearIntepolation(nn.Module):
"""TrilinearIntepolation in PyTorch."""
def __init__(self):
super(TrilinearIntepolation, self).__init__()
def sample_at_integer_locs(self, input_feats, index_tensor):
assert input_feats.ndimension()==5, 'input_feats should be of shape [Batch,F,D,Height,Width]'
assert index_tensor.ndimension()==4, 'index_tensor should be of shape [Batch,Height,Width,3]'
# first sample pixel locations using nearest neighbour interpolation
batch_size, num_chans, num_d, height, width = input_feats.shape
grid_height, grid_width = index_tensor.shape[1],index_tensor.shape[2]
xy_grid = index_tensor[..., 0:2]
# 0:2是包括0但是不包括2的,因此取出来的是最后一个维度的0维和1维
xy_grid[..., 0] = xy_grid[..., 0] - ((width-1.0)/2.0)
xy_grid[..., 0] = xy_grid[..., 0] / ((width-1.0)/2.0)
xy_grid[..., 1] = xy_grid[..., 1] - ((height-1.0)/2.0)
xy_grid[..., 1] = xy_grid[..., 1] / ((height-1.0)/2.0)
xy_grid = torch.clamp(xy_grid, min=-1.0, max=1.0)
#clamp限制每个元素的最大值和最小值
sampled_in_2d = F.grid_sample(input=input_feats.view(batch_size, num_chans*num_d, height, width),
grid=xy_grid, mode='nearest').view(batch_size, num_chans, num_d, grid_height, grid_width)
# grid_sample双线性插值https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html?highlight=grid_sample#torch.nn.functional.grid_sample
# view函数https://blog.csdn.net/york1996/article/details/81949843
z_grid = index_tensor[..., 2].view(batch_size, 1, 1, grid_height, grid_width)
z_grid = z_grid.long().clamp(min=0, max=num_d-1)
# .long()将张量转换为int64类型
z_grid = z_grid.expand(batch_size,num_chans, 1, grid_height, grid_width)
# expand对原张量中维度为1的维度进行扩展 https://blog.csdn.net/weixin_42782150/article/details/108615706
# 本例中是使用expand对dim=1的维度进行扩展,扩展成num_chans
sampled_in_3d = sampled_in_2d.gather(2, z_grid).squeeze(2)
return sampled_in_3d
def forward(self, input_feats, sampling_grid):
assert input_feats.ndimension()==5, 'input_feats should be of shape [B,F,D,H,W]'
assert sampling_grid.ndimension()==4, 'sampling_grid should be of shape [B,H,W,3]'
batch_size, num_chans, num_d, height, width = input_feats.shape
grid_height, grid_width = sampling_grid.shape[1],sampling_grid.shape[2]
# make sure sampling grid lies between -1, 1
sampling_grid = torch.clamp(sampling_grid, min=-1.0, max=1.0)
# map to 0,1
sampling_grid = (sampling_grid+1)/2.0
# Scale grid to floating point pixel locations
scaling_factor = torch.FloatTensor([width-1.0, height-1.0, num_d-1.0]).to(input_feats.device).view(1, 1, 1, 3)
sampling_grid = scaling_factor*sampling_grid
# Now sampling grid is between [0, w-1; 0,h-1; 0,d-1]
x, y, z = torch.split(sampling_grid, split_size_or_sections=1, dim=3)
#这个(x,y,z)是输入的浮点数(在这篇文章中是每个像素点的rgb值)
#这个(x0,y0,z0)是输入的浮点数向下取整
#把sampling_grid维度是3的那个维度切成每份大小为1
x_0, y_0, z_0 = torch.split(sampling_grid.floor(), split_size_or_sections=1, dim=3)
x_1, y_1, z_1 = x_0+1.0, y_0+1.0, z_0+1.0
u, v, w = x-x_0, y-y_0, z-z_0
print("v:",x_0,y_0,z_0)
print("s:",x_0.size(),y_0.size(),z_0.size())
print("size,cat",torch.cat([x_0, y_0, z_0],dim=3).size())
u, v, w = map(lambda x:x.view(batch_size, 1, grid_height, grid_width).expand(
batch_size, num_chans, grid_height, grid_width), [u, v, w])
c_000 = self.sample_at_integer_locs(input_feats, torch.cat([x_0, y_0, z_0], dim=3))
# torch.cat 函数目的: 在给定维度上对输入的张量序列seq 进行连接操作。
c_001 = self.sample_at_integer_locs(input_feats, torch.cat([x_0, y_0, z_1], dim=3))
c_010 = self.sample_at_integer_locs(input_feats, torch.cat([x_0, y_1, z_0], dim=3))
c_011 = self.sample_at_integer_locs(input_feats, torch.cat([x_0, y_1, z_1], dim=3))
c_100 = self.sample_at_integer_locs(input_feats, torch.cat([x_1, y_0, z_0], dim=3))
c_101 = self.sample_at_integer_locs(input_feats, torch.cat([x_1, y_0, z_1], dim=3))
c_110 = self.sample_at_integer_locs(input_feats, torch.cat([x_1, y_1, z_0], dim=3))
c_111 = self.sample_at_integer_locs(input_feats, torch.cat([x_1, y_1, z_1], dim=3))
c_xyz = (1.0-u)*(1.0-v)*(1.0-w)*c_000 + \
(1.0-u)*(1.0-v)*(w)*c_001 + \
(1.0-u)*(v)*(1.0-w)*c_010 + \
(1.0-u)*(v)*(w)*c_011 + \
(u)*(1.0-v)*(1.0-w)*c_100 + \
(u)*(1.0-v)*(w)*c_101 + \
(u)*(v)*(1.0-w)*c_110 + \
(u)*(v)*(w)*c_111
return c_xyz
# class bing_lut_trilinearInterplt(nn.Module):
# def __init__(self):
# super(bing_lut_trilinearInterplt, self).__init__()
# def test(self,LUT,img_input):
# # batch_size, num_chans, height, width = img_input.shape
# # grid_height, grid_width = LUT.shape[1],LUT.shape[2]
# grid_in=img_input.transpose(1,2).transpose(2,3)
# # 原本img_input NCHW,改成 NHWC
# xy_grid=grid_in[...,0:2]
# yz_grid=grid_in[...,1:3]
# #只取3通道中的第0和第1通道(0:2不含2)
# input_LUT=LUT[:,:,0,:]
# input_LUT_ori=input_LUT.squeeze(2)
# # LUT[33,33,33,3]->[33,33,3],把dim=2的数据丢掉了
# input_LUT=input_LUT_ori[...,0:2]
# input_LUT2=input_LUT_ori[...,1:]
# print("input_LUT2.size()",input_LUT2.size())
# # LUT[33,33,2]
# input_LUT=input_LUT.transpose(1,2).transpose(0,1)
# input_LUT2=input_LUT2.transpose(1,2).transpose(0,1)
# # LUT[2,33,33]
# input_LUT=input_LUT.unsqueeze(0)
# input_LUT2=input_LUT2.unsqueeze(0)
# print(input_LUT.size())
# print(input_LUT2.size())
# print(grid_in.size())
# sampled_in_2d = F.grid_sample(input=input_LUT,grid=xy_grid, mode='nearest')
# # .view(batch_size, num_chans, num_d, grid_height, grid_width)
# sampled_in_2d_2 = F.grid_sample(input=input_LUT2,grid=yz_grid, mode='nearest')
# # .view(batch_size, num_chans, num_d, grid_height, grid_width)
# # print("sampled_in_2d.size()",sampled_in_2d.size())
# # print("sampled_in_2d.size()",sampled_in_2d_2.size())
# # # [1,2,2160,3840]
# # print("ss")
# # print(sampled_in_2d.size())
# # print(sampled_in_2d_2.size())
# res=torch.cat([sampled_in_2d,sampled_in_2d_2[:,1:,:,:]],dim=1)
# print(res.size())
# return res
# # z_grid = grid_in[..., 2]
# # print(z_grid.size())
# # # [1,2160,3840]
# # print("sss")
# def gen_Cout_ijk(self,LUT,x_i,y_i,z_i):
# # def gen_Cout_ijk(LUT,x_i,y_i,z_i,channel=3):
# # LUT size [3,33,33,33]
# # x_i,y_i,z_i size [1,1,2160,3840]
# # N=batch_size
# #img_input.size()=[1,3,2160,3840]\
# # LUT.size()=[3,33,33,33]
# # assert LUT.ndimension()==4, 'LUT should be of shape [C,M,M,M](M=33)'
# channel=3
# batch_size,_,height,width=x_i.size()
# print(batch_size,height,width)
# output=torch.zeros([batch_size,channel,height,width])
# # 设置输出大小为[1,3,2160,3840]
# if batch_size==1:
# # x_i=x_i.view(height*width)
# # y_i=y_i.view(height*width)
# # z_i=z_i.view(height*width)
# x_i=x_i.view(height*width).long()
# y_i=y_i.view(height*width).long()
# z_i=z_i.view(height*width).long()
# # x_i=x_i.view(1, height*width)
# # y_i=y_i.view(1, height*width)
# # z_i=z_i.view(1, height*width)
# # 2维tensor,[1, 2160*3840]
# # xyz_i=torch.cat([x_i,y_i,z_i],dim=0)
# # # xyz_i 2维tensor,[3, 2160*3840]
# # print("xyz_i.size()",xyz_i.size())
# else:
# print("error:batch size must be 1")
# for i in range(height*width):
# h_index=int(i/width)
# w_index=int(i%width)
# # print(h_index)
# # print(w_index)
# # print(x_i.size())
# # print(batch_size)
# # print(output.size())
# # print(output[0,0,h_index,w_index])
# if(i%10000==0):
# print(i)
# output[batch_size-1,0,h_index,w_index]=LUT[x_i[i],y_i[i],z_i[i],0]
# output[batch_size-1,1,h_index,w_index]=LUT[x_i[i],y_i[i],z_i[i],1]
# output[batch_size-1,2,h_index,w_index]=LUT[x_i[i],y_i[i],z_i[i],2]
# # x_i=x_i.view(batch_size,height*width)
# # y_i=y_i.view(batch_size,height*width)
# # z_i=z_i.view(batch_size,height*width)
# # 1,2160*3840
# return output
# def forward(self, LUT, img_input):
# assert img_input.ndimension()==4, 'img_input should be of shape [N,C,H,W]'
# # N=batch_size
# #img_input.size()=[1,3,2160,3840]\
# # LUT.size()=[3,33,33,33]
# assert LUT.ndimension()==4, 'LUT should be of shape [C,M,M,M](M=33)'
# batch_size, num_chans, height, width = img_input.shape
# dim = LUT.shape[1] # M
# img_size=img_input.size()
# Cmax=255.0
# s=Cmax/dim
# r,g,b=torch.split(img_input,split_size_or_sections=1,dim=1)
# # 将[1,3,2160,3840]以维度为1切成[1,1,2160,3840]的三部分
# #r,g,b.size()=[1,1,2160,3840]
# # r=img_input[:,0,:,:]
# # g=img_input[:,1,:,:]
# # b=img_input[:,2,:,:]
# x=r/s
# y=g/s
# z=b/s
# # tmptmp=self.test(LUT,img_input)
# # x,y,z.size=[1,1,,2160,3840]
# # x_0,y_0,z_0.size=[1,1,,2160,3840]
# # x_1, y_1, z_1.size=[1,1,,2160,3840]
# x_0,y_0,z_0=x.floor(),y.floor(),z.floor()
# x_1, y_1, z_1 = x_0+1.0, y_0+1.0, z_0+1.0
# u, v, w = x-x_0, y-y_0, z-z_0
# # u,v,w.size=[1,1,2160,3840]
# # print("x_0.size",x_0.size())
# c_000 = self.test(LUT,torch.cat([x_0,y_0,z_0],dim=1))
# print(c_000.size())
# # x_i是顶点,大小为[1,1,2160,3840]
# # 输出c_xxx是对应顶点的LUT的值,大小为[1,3,2160,3840]
# c_100 = self.test(LUT,torch.cat([x_1,y_0,z_0],dim=1))
# c_010 = self.test(LUT,torch.cat([x_0,y_1,z_0],dim=1))
# c_110 = self.test(LUT,torch.cat([x_1,y_1,z_0],dim=1))
# c_001 = self.test(LUT,torch.cat([x_0,y_0,z_1],dim=1))
# c_101 = self.test(LUT,torch.cat([x_1,y_0,z_1],dim=1))
# c_011 = self.test(LUT,torch.cat([x_0,y_1,z_1],dim=1))
# c_111 = self.test(LUT,torch.cat([x_1,y_1,z_1],dim=1))
# # c_000 = self.gen_Cout_ijk(LUT,x_0,y_0,z_0)
# # # x_i是顶点,大小为[1,1,2160,3840]
# # # 输出c_xxx是对应顶点的LUT的值,大小为[1,3,2160,3840]
# # c_100 = self.gen_Cout_ijk(LUT,x_1,y_0,z_0)
# # c_010 = self.gen_Cout_ijk(LUT,x_0,y_1,z_0)
# # c_110 = self.gen_Cout_ijk(LUT,x_1,y_1,z_0)
# # c_001 = self.gen_Cout_ijk(LUT,x_0,y_0,z_1)
# # c_101 = self.gen_Cout_ijk(LUT,x_1,y_0,z_1)
# # c_011 = self.gen_Cout_ijk(LUT,x_0,y_1,z_1)
# # c_111 = self.gen_Cout_ijk(LUT,x_1,y_1,z_1)
# c_xyz = (1.0-u)*(1.0-v)*(1.0-w)*c_000 + \
# (1.0-u)*(1.0-v)*(w)*c_001 + \
# (1.0-u)*(v)*(1.0-w)*c_010 + \
# (1.0-u)*(v)*(w)*c_011 + \
# (u)*(1.0-v)*(1.0-w)*c_100 + \
# (u)*(1.0-v)*(w)*c_101 + \
# (u)*(v)*(1.0-w)*c_110 + \
# (u)*(v)*(w)*c_111
# # 广播机制,输出[1,3,2160,3840]
# print("c_xyz",c_xyz.size())
# return c_xyz
# # id100 = x_0 + 1.0 + y_0 * dim + z_0 * dim * dim
# # id010 = x_0 + (y_0 + 1.0) * dim + z_0 * dim * dim
# # id110 = x_0 + 1.0 + (y_0 + 1.0) * dim + z_0 * dim * dim
# # id001 = x_0 + y_0 * dim + (z_0 + 1.0) * dim * dim
# # id101 = x_0 + 1.0 + y_0 * dim + (z_0 + 1.0) * dim * dim
# # id011 = x_0 + (y_0 + 1.0) * dim + (z_0 + 1.0) * dim * dim
# # id111 = x_0 + 1.0 + (y_0 + 1.0) * dim + (z_0 + 1.0) * dim * dim
# # w000 = (1.0-u)*(1-v)*(1-w)
# # #大概也许得改成点乘
# # w100 = u*(1-v)*(1-w)
# # w010 = (1-u)*v*(1-w)
# # w110 = u*v*(1-w)
# # w001 = (1-u)*(1-v)*w
# # w101 = u*(1-v)*w
# # w011 = (1-u)*v*w
# # w111 = u*v*w
# # output=
# # print("v:",x_0,y_0,z_0)
# # print("s:",x_0.size(),y_0.size(),z_0.size())
# # u,v,w=u/s,v/s,w/s
# # c_000 = self.gen_Cout_ijk(x_0,y_0,z_0)
# # c_100 = self.gen_Cout_ijk(x_1,y_0,z_0)
# # c_010 = self.gen_Cout_ijk(x_0,y_1,z_0)
# # c_110 = self.gen_Cout_ijk(x_1,y_1,z_0)
# # c_001 = self.gen_Cout_ijk(x_0,y_0,z_1)
# # c_101 = self.gen_Cout_ijk(x_1,y_0,z_1)
# # c_011 = self.gen_Cout_ijk(x_0,y_1,z_1)
# # c_111 = self.gen_Cout_ijk(x_1,y_1,z_1)
# # c_xyz = (1.0-u)*(1.0-v)*(1.0-w)*c_000 + \
# # (1.0-u)*(1.0-v)*(w)*c_001 + \
# # (1.0-u)*(v)*(1.0-w)*c_010 + \
# # (1.0-u)*(v)*(w)*c_011 + \
# # (u)*(1.0-v)*(1.0-w)*c_100 + \
# # (u)*(1.0-v)*(w)*c_101 + \
# # (u)*(v)*(1.0-w)*c_110 + \
# # (u)*(v)*(w)*c_111
# # return c_xyz
class Tritri(nn.Module):
def __init__(self):
super(Tritri, self).__init__()
def forward(self,LUT,img):
img = (img - .5) * 2.
# grid_sample expects NxDxHxWx3 (1x1xHxWx3)
img = img.permute(0, 2, 3, 1)[:, None]
# add batch dim to LUT
LUT = LUT[None]
# grid sample
result = F.grid_sample(LUT, img, mode='bilinear', padding_mode='border', align_corners=True)
# drop added dimensions and permute back
result = result[:, :, 0].permute(0, 2, 3, 1)
return result
class bing_lut_trilinearInterplt(nn.Module):
def __init__(self):
super(bing_lut_trilinearInterplt, self).__init__()
def test(self,LUT,img_input):
# batch_size, num_chans, height, width = img_input.shape
# grid_height, grid_width = LUT.shape[1],LUT.shape[2]
grid_in=img_input.transpose(1,2).transpose(2,3)
# 1
# 原本img_input NCHW,改成 NHWC
xy_grid=grid_in[...,0:2]
yz_grid=grid_in[...,1:3]
# 23
#只取3通道中的第0和第1通道(0:2不含2)
# LUT正确版本应该是[3,33,33,33]
# 在这里弄错成为[33,33,33,3]
input_LUT=LUT[:,:,:,0:1]
input_LUT_ori=input_LUT.squeeze(3)
# 45
# [3,33,33,33]->[3,33,33] 把dim=3的数据丢掉了
# input_LUT=LUT[:,:,0,:]
# input_LUT_ori=input_LUT.squeeze(2)
# # LUT[33,33,33,3]->[33,33,3],把dim=2的数据丢掉了
input_LUT=input_LUT_ori[0:2,...]
input_LUT2=input_LUT_ori[1:,...]
input_LUT=input_LUT.unsqueeze(0)
input_LUT2=input_LUT2.unsqueeze(0)
# 6-9
# 都是[1,2,33,33]
# print(input_LUT.size())
# print("dtype:")
# print(input_LUT.dtype)
# print(input_LUT2.dtype)
# print(xy_grid.dtype)
# print(yz_grid.dtype)
# input_LUT.int()
# input_LUT2.int()
# xy_grid.int()
# yz_grid.int()
# # print(grid_in.size())
sampled_in_2d = F.grid_sample(input=input_LUT,grid=xy_grid, mode='nearest',align_corners=False)
# .view(batch_size, num_chans, num_d, grid_height, grid_width)
sampled_in_2d_2 = F.grid_sample(input=input_LUT2,grid=yz_grid, mode='nearest',align_corners=False)
# .view(batch_size, num_chans, num_d, grid_height, grid_width)
# 10
res=torch.cat([sampled_in_2d,sampled_in_2d_2[:,1:,:,:]],dim=1)
# print(res.size())
return res
def forward(self, LUT, img_input):
assert img_input.ndimension()==4, 'img_input should be of shape [N,C,H,W]'
# N=batch_size
#img_input.size()=[1,3,2160,3840]\
# LUT.size()=[3,33,33,33]
assert LUT.ndimension()==4, 'LUT should be of shape [C,M,M,M](M=33)'
# batch_size, num_chans, height, width = img_input.shape
dim = LUT.shape[1] # M
# img_size=img_input.size()
# Cmax=1.00001
Cmax=10
s=Cmax/(dim-1.0)
s=torch.Tensor([s])
#谢谢小黄鸭!!#data types int64 and int32 do not match in BroadcastRel
r,g,b=torch.split(img_input,split_size_or_sections=1,dim=1)
# 将[1,3,2160,3840]以维度为1切成[1,1,2160,3840]的三部分
#r,g,b.size()=[1,1,2160,3840]
# r=img_input[:,0,:,:]
# g=img_input[:,1,:,:]
# b=img_input[:,2,:,:]
s=s.to(r.device)
x=r/s
y=g/s
z=b/s
# tmptmp=self.test(LUT,img_input)
# x,y,z.size=[1,1,,2160,3840]
# x_0,y_0,z_0.size=[1,1,,2160,3840]
# x_1, y_1, z_1.size=[1,1,,2160,3840]
x_0,y_0,z_0=x.floor(),y.floor(),z.floor()
x_1, y_1, z_1 = x_0+1.0, y_0+1.0, z_0+1.0
u, v, w = x-x_0, y-y_0, z-z_0
# u,v,w.size=[1,1,2160,3840]
# print("x_0.size",x_0.size())
c_000 = self.test(LUT,torch.cat([x_0,y_0,z_0],dim=1))
# print(c_000.size())
# x_i是顶点,大小为[1,1,2160,3840]
# 输出c_xxx是对应顶点的LUT的值,大小为[1,3,2160,3840]
c_100 = self.test(LUT,torch.cat([x_1,y_0,z_0],dim=1))
c_010 = self.test(LUT,torch.cat([x_0,y_1,z_0],dim=1))
c_110 = self.test(LUT,torch.cat([x_1,y_1,z_0],dim=1))
c_001 = self.test(LUT,torch.cat([x_0,y_0,z_1],dim=1))
c_101 = self.test(LUT,torch.cat([x_1,y_0,z_1],dim=1))
c_011 = self.test(LUT,torch.cat([x_0,y_1,z_1],dim=1))
c_111 = self.test(LUT,torch.cat([x_1,y_1,z_1],dim=1))
c_xyz = (1.0-u)*(1.0-v)*(1.0-w)*c_000 + \
(1.0-u)*(1.0-v)*(w)*c_001 + \
(1.0-u)*(v)*(1.0-w)*c_010 + \
(1.0-u)*(v)*(w)*c_011 + \
(u)*(1.0-v)*(1.0-w)*c_100 + \
(u)*(1.0-v)*(w)*c_101 + \
(u)*(v)*(1.0-w)*c_110 + \
(u)*(v)*(w)*c_111
# 广播机制,输出[1,3,2160,3840]
print("c_xyz",c_xyz.size())
return c_xyz
class bing_lut_trilinearInterplt_backup(nn.Module):
def __init__(self):
super(bing_lut_trilinearInterplt, self).__init__()
def test(self,LUT,img_input):
# batch_size, num_chans, height, width = img_input.shape
# grid_height, grid_width = LUT.shape[1],LUT.shape[2]
grid_in=img_input.transpose(1,2).transpose(2,3)
# 1
# 原本img_input NCHW,改成 NHWC
xy_grid=grid_in[...,0:2]
yz_grid=grid_in[...,1:3]
# 23
#只取3通道中的第0和第1通道(0:2不含2)
# LUT正确版本应该是[3,33,33,33]
# 在这里弄错成为[33,33,33,3]
input_LUT=LUT[:,:,:,0:1]
input_LUT_ori=input_LUT.squeeze(3)
# 45
# [3,33,33,33]->[3,33,33] 把dim=3的数据丢掉了
# input_LUT=LUT[:,:,0,:]
# input_LUT_ori=input_LUT.squeeze(2)
# # LUT[33,33,33,3]->[33,33,3],把dim=2的数据丢掉了
input_LUT=input_LUT_ori[0:2,...]
input_LUT2=input_LUT_ori[1:,...]
input_LUT=input_LUT.unsqueeze(0)
input_LUT2=input_LUT2.unsqueeze(0)
# 6-9
# 都是[1,2,33,33]
# print(input_LUT.size())
# print("dtype:")
# print(input_LUT.dtype)
# print(input_LUT2.dtype)
# print(xy_grid.dtype)
# print(yz_grid.dtype)
# input_LUT.int()
# input_LUT2.int()
# xy_grid.int()
# yz_grid.int()
# # print(grid_in.size())
sampled_in_2d = F.grid_sample(input=input_LUT,grid=xy_grid, mode='nearest')
# .view(batch_size, num_chans, num_d, grid_height, grid_width)
sampled_in_2d_2 = F.grid_sample(input=input_LUT2,grid=yz_grid, mode='nearest')
# .view(batch_size, num_chans, num_d, grid_height, grid_width)
# 10
res=torch.cat([sampled_in_2d,sampled_in_2d_2[:,1:,:,:]],dim=1)
# print(res.size())
return res
def forward(self, LUT, img_input):
assert img_input.ndimension()==4, 'img_input should be of shape [N,C,H,W]'
# N=batch_size
#img_input.size()=[1,3,2160,3840]\
# LUT.size()=[3,33,33,33]
assert LUT.ndimension()==4, 'LUT should be of shape [C,M,M,M](M=33)'
# batch_size, num_chans, height, width = img_input.shape
dim = LUT.shape[1] # M
# img_size=img_input.size()
Cmax=255.0
s=Cmax/dim
s=torch.Tensor([s])
#谢谢小黄鸭!!#data types int64 and int32 do not match in BroadcastRel
r,g,b=torch.split(img_input,split_size_or_sections=1,dim=1)
# 将[1,3,2160,3840]以维度为1切成[1,1,2160,3840]的三部分
#r,g,b.size()=[1,1,2160,3840]
# r=img_input[:,0,:,:]
# g=img_input[:,1,:,:]
# b=img_input[:,2,:,:]
x=r/s
y=g/s
z=b/s
# tmptmp=self.test(LUT,img_input)
# x,y,z.size=[1,1,,2160,3840]
# x_0,y_0,z_0.size=[1,1,,2160,3840]
# x_1, y_1, z_1.size=[1,1,,2160,3840]
x_0,y_0,z_0=x.floor(),y.floor(),z.floor()
x_1, y_1, z_1 = x_0+1.0, y_0+1.0, z_0+1.0
u, v, w = x-x_0, y-y_0, z-z_0
# u,v,w.size=[1,1,2160,3840]
# print("x_0.size",x_0.size())
c_000 = self.test(LUT,torch.cat([x_0,y_0,z_0],dim=1))
# print(c_000.size())
# x_i是顶点,大小为[1,1,2160,3840]
# 输出c_xxx是对应顶点的LUT的值,大小为[1,3,2160,3840]
c_100 = self.test(LUT,torch.cat([x_1,y_0,z_0],dim=1))
c_010 = self.test(LUT,torch.cat([x_0,y_1,z_0],dim=1))
c_110 = self.test(LUT,torch.cat([x_1,y_1,z_0],dim=1))
c_001 = self.test(LUT,torch.cat([x_0,y_0,z_1],dim=1))
c_101 = self.test(LUT,torch.cat([x_1,y_0,z_1],dim=1))
c_011 = self.test(LUT,torch.cat([x_0,y_1,z_1],dim=1))
c_111 = self.test(LUT,torch.cat([x_1,y_1,z_1],dim=1))
# c_000 = self.gen_Cout_ijk(LUT,x_0,y_0,z_0)
# # x_i是顶点,大小为[1,1,2160,3840]
# # 输出c_xxx是对应顶点的LUT的值,大小为[1,3,2160,3840]
# c_100 = self.gen_Cout_ijk(LUT,x_1,y_0,z_0)
# c_010 = self.gen_Cout_ijk(LUT,x_0,y_1,z_0)
# c_110 = self.gen_Cout_ijk(LUT,x_1,y_1,z_0)
# c_001 = self.gen_Cout_ijk(LUT,x_0,y_0,z_1)
# c_101 = self.gen_Cout_ijk(LUT,x_1,y_0,z_1)
# c_011 = self.gen_Cout_ijk(LUT,x_0,y_1,z_1)
# c_111 = self.gen_Cout_ijk(LUT,x_1,y_1,z_1)
c_xyz = (1.0-u)*(1.0-v)*(1.0-w)*c_000 + \
(1.0-u)*(1.0-v)*(w)*c_001 + \
(1.0-u)*(v)*(1.0-w)*c_010 + \
(1.0-u)*(v)*(w)*c_011 + \
(u)*(1.0-v)*(1.0-w)*c_100 + \
(u)*(1.0-v)*(w)*c_101 + \
(u)*(v)*(1.0-w)*c_110 + \
(u)*(v)*(w)*c_111
# 广播机制,输出[1,3,2160,3840]
print("c_xyz",c_xyz.size())
return c_xyz
# @staticmethod
# def backward(ctx, lut_grad, x_grad):
# lut, x, int_package, float_package = ctx.saved_variables
# dim, shift, W, H, batch = int_package
# dim, shift, W, H, batch = int(dim), int(shift), int(W), int(H), int(batch)
# binsize = float(float_package[0])
# assert 1 == trilinear.backward(x,
# x_grad,
# lut_grad,
# dim,
# shift,
# binsize,
# W,
# H,
# batch)
# return lut_grad, x_grad
class Tri(nn.Module):
def __init__(self):
super(Tri,self).__init__()
if __name__=='__main__':
# input_features: shape [B, num_channels, depth, height, width]
# sampling_grid: shape [B,depth, height, 3]
data = torch.rand(1, 32, 16, 128, 128)
# data = torch.rand(1, 3, 16, 128, 128)
sampling_grid = (torch.rand(1, 256, 256, 3) - 0.5)*2.0
data = data.float().cuda(0)
sampling_grid = sampling_grid.float().cuda(0)
trilinear_interpolation = TrilinearIntepolation().cuda(0)
# LUT.type() torch.cuda.FloatTensor
# LUT.size() torch.Size([3, 33, 33, 33])
# img: torch.Size([1, 3, 2160, 3840])
data2 = torch.rand(1, 3,2160,3840)
# LUT2 = torch.rand(33,33,33,3)
LUT2 = torch.rand(3,33,33,33)
trilinear_interpolation2 = bing_lut_trilinearInterplt()
t_start = time.time()
interp_data2=trilinear_interpolation2(LUT2,data2)
# interpolated_data = trilinear_interpolation(data, sampling_grid)
# print(interpolated_data.shape)
torch.cuda.synchronize()
print('time per iteration ', time.time()-t_start)
# for i in range(100):
# t_start = time.time()
# interpolated_data = trilinear_interpolation(data, sampling_grid)
# print(interpolated_data.shape)
# torch.cuda.synchronize()
# print('time per iteration ', time.time()-t_start)
|