Spaces:
Runtime error
Runtime error
File size: 14,817 Bytes
16aad69 9c97e98 16aad69 9c97e98 16aad69 02acfd5 16aad69 ecf1971 16aad69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import streamlit as st
from predict import PaddleOCR
from pdf2image import convert_from_bytes
import cv2
import PIL
import numpy as np
import os
import tempfile
import random
import string
from ultralyticsplus import YOLO
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
import re
from dateutil.parser import parse
import datetime
from file_utils import (
get_img,
save_excel_file,
concat_csv,
convert_pdf_to_image,
filter_color,
plot,
delete_file,
)
from process import (
filter_columns,
extract_text_of_col,
prepare_cols,
process_cols,
finalize_data,
)
table_model = YOLO("table.pt")
column_model = YOLO("columns.pt")
def remove_dots(string):
# Remove dots from the first and last position of the string
string = string.strip('.')
# Remove the first dot from left to right if there are still more than one dots
if string.count('.') > 1:
string = string.replace(".", "", 1)
return string
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
def PIL_to_cv(pil_img):
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
def cv_to_PIL(cv_img):
return PIL.Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
def visualize_ocr(pil_img, ocr_result):
plt.imshow(pil_img, interpolation='lanczos')
plt.gcf().set_size_inches(20, 20)
ax = plt.gca()
for idx, result in enumerate(ocr_result):
bbox = result['bbox']
text = result['text']
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=2, edgecolor='red', facecolor='none', linestyle='-')
ax.add_patch(rect)
ax.text(bbox[0], bbox[1], text, horizontalalignment='left', verticalalignment='bottom', color='blue', fontsize=7)
plt.xticks([], [])
plt.yticks([], [])
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
img_buf = io.BytesIO()
plt.savefig(img_buf, bbox_inches='tight', dpi=150)
plt.close()
return PIL.Image.open(img_buf)
def filter_columns(columns: np.ndarray):
for idx, col in enumerate(columns):
if idx >= len(columns) - 1:
break
nxt = columns[idx + 1]
threshold = ((col[2] - col[0]) + (nxt[2] - nxt[0])) / 2
if (col[2] - columns[idx + 1][0]) > threshold * 0.5:
col[1], col[2], col[3] = min(col[1], nxt[1]), nxt[2], max(col[3], nxt[3])
columns = np.delete(columns, idx + 1, 0)
idx -= 1
return columns
st.title("Extract Data from Bank Statements")
model = PaddleOCR()
uploaded = st.file_uploader(
"Upload a bank statement pdf file",
type=["png", "jpg", "jpeg", "PNG", "JPG", "JPEG", "pdf", "PDF"],
)
number = st.number_input('Select Year',value=2023, step=1)
filter = st.checkbox("filter color")
if st.button('Analyze Uploaded File'):
final_csv = pd.DataFrame()
first_flag_dataframe=0
if uploaded is None:
st.write('Please upload an image')
else:
tabs = st.tabs(
['Pages','Table Detection', 'Table Structure Recognition', 'Extracted Table(s)']
)
print(uploaded.type)
if uploaded.type == "application/pdf":
foldername = tempfile.TemporaryDirectory(dir=os.getcwd())
filename = uploaded.name.split(".")[0]
pdf_pages=convert_from_bytes(uploaded.read(),500)
for page_enumeration, page in enumerate(pdf_pages, start=1):
with tabs[0]:
st.header('Pages : '+str(page_enumeration))
st.image(page)
page_img=np.asarray(page)
tables = PaddleOCR.table_model(page_img, conf=0.75)
tabel_datas=tables[0].boxes.data.cpu().numpy()
tables = tables[0].boxes.xyxy.cpu().numpy()
with tabs[1]:
st.header('Table Detection Page :'+str(page_enumeration))
str_cols = st.columns(4)
str_cols[0].subheader('Table image')
str_cols[1].subheader('Columns')
str_cols[2].subheader('Structure result')
str_cols[3].subheader('Cells result')
results = []
for table in tables:
try:
tabel_data = np.array(
sorted(tabel_datas, key=lambda x: x[0]), dtype=np.ndarray
)
tabel_data = filter_columns(tabel_data)
str_cols[0].image(plot(page_img, tabel_data), channels="RGB")
# * crop the table as an image from the original image
sub_img = page_img[
int(table[1].item()): int(table[3].item()),
int(table[0].item()): int(table[2].item()),
]
columns_detect = PaddleOCR.column_model(sub_img, conf=0.75)
cols_data = columns_detect[0].boxes.data.cpu().numpy()
# * Sort columns according to the x coordinate
cols_data = np.array(
sorted(cols_data, key=lambda x: x[0]), dtype=np.ndarray
)
# * merge the duplicated columns
cols_data = filter_columns(cols_data)
str_cols[1].image(plot(sub_img, cols_data), channels="RGB")
except Exception as e:
print(e)
st.warning("No Detection")
try:
####################################################################
# # columns = cols_data[:, 0:4]
# # #sub_imgs = []
# # thr = 0
# # column = columns[0]
# # maxcol1=int(column[1])
# # maxcol3=int(column[3])
# # cols = []
# # for column in columns:
# # if maxcol1 < int(column[1]) :
# # maxcol1=int(column[1])
# # if maxcol3 < int(column[3]) :
# # maxcol3=int(column[3])
# # sub_imgs = (sub_img[ maxcol1: maxcol3, : ])
# # str_cols[2].image(sub_imgs)
# # image = filter_color(sub_imgs)
# # res, threshold,ocr_res = extract_text_of_col(image)
# # vis_ocr_img = visualize_ocr(image, ocr_res)
# # str_cols[3].image(vis_ocr_img)
# # thr += threshold
# # cols.append(prepare_cols(res, threshold * 0.6))
# # print("cols : ",cols)
# # thr = thr / len(columns)
# # data = process_cols(cols, thr * 0.6)
# # print("data : ",data)
######################################################################
columns = cols_data[:, 0:4]
sub_imgs = []
column = columns[0]
maxcol1=int(column[1])
maxcol3=int(column[3])
#for column in columns:
# if maxcol1 < int(column[1]) :
# maxcol1=int(column[1])
# if maxcol3 < int(column[3]) :
# maxcol3=int(column[3])
for column in columns:
# * Create list of cropped images for each column
sub_imgs.append(sub_img[maxcol1:maxcol3, int(column[0]): int(column[2])])
cols = []
thr = 0
for image in sub_imgs:
if filter:
# * keep only black color in the image
image = filter_color(image)
# * extract text of each column and get the length threshold
res, threshold, ocr_res = extract_text_of_col(image)
thr += threshold
# * arrange the rows of each column with respect to row length threshold
cols.append(prepare_cols(res, threshold * 0.6))
thr = thr / len(sub_imgs)
# * append each element in each column to its right place in the dataframe
data = process_cols(cols, thr * 0.6)
# * merge the related rows together
data: pd.DataFrame = finalize_data(data, page_enumeration)
results.append(data)
with tabs[2]:
st.header('Extracted Table(s)')
st.dataframe(data)
print("data : ",data)
print("results : ", results)
if first_flag_dataframe == 0 :
first_flag_dataframe=1
final_csv=data
else:
final_csv = pd.concat([final_csv,data],ignore_index=True)
csv = convert_df(data)
print(csv)
except:
st.warning("Text Extraction Failed")
continue
with tabs[3]:
st.dataframe(final_csv)
rough_csv= convert_df(final_csv)
st.download_button(
"rough-csv",
rough_csv,
"file.csv",
"text/csv",
key='rough-csv'
)
final_csv.columns = ['page','Date', 'Transaction_Details', 'Three', 'Deposit','Withdrawal','Balance']
#final_csv = final_csv.rename(columns={1: 'Date', 2: 'Transaction_Details', 3: 'Three', 4: 'Deposit',5 : 'Withdrawal',6:'Balance'})
final_csv['Date'] = final_csv['Date'].astype(str)
st.dataframe(final_csv)
final_csv = final_csv[~final_csv['Date'].str.contains('Date')]
final_csv = final_csv[~final_csv['Date'].str.contains('日期')]
final_csv = final_csv[~final_csv['Date'].str.contains('口期')]
final_csv['Date'] = final_csv['Date'].apply(lambda x: re.sub(r'[^a-zA-Z0-9 ]', '', x))
final_csv['Date'] = final_csv['Date'].apply(lambda x: x + str(number))
final_csv['Date'] = final_csv['Date'].apply(lambda x:parse(x, fuzzy=True))
#final_csv['Date']=final_csv['Date'].str.replace(' ', '')
final_csv['*Date'] = pd.to_datetime(final_csv['Date']).dt.strftime('%d-%m-%Y')
final_csv['Withdrawal'] = final_csv['Withdrawal'].astype(str)
final_csv['Withdrawal'] = final_csv['Withdrawal'].str.replace('i', '').str.replace('E', '').str.replace(':', '').str.replace('M', '').str.replace('?', '').str.replace('t', '').str.replace('+', '').str.replace(';', '').str.replace('g', '').str.replace('^', '').str.replace('m', '').str.replace('/', '').str.replace('#', '').str.replace("'", '').str.replace('w', '').str.replace('"', '').str.replace('%', '').str.replace('r', '').str.replace('-', '').str.replace('v', '').str.replace(',', '').str.replace('·', '').str.replace(':', '').str.replace(' ', '').str.replace('*', '').str.replace('~', '').str.replace('V', '')
final_csv['Withdrawal'] = final_csv['Withdrawal'].apply(remove_dots)
final_csv['Withdrawal'] = final_csv['Withdrawal'].astype(float)*-1
final_csv['Deposit'] = final_csv['Deposit'].astype(str)
final_csv['Deposit'] = final_csv['Deposit'].str.replace('i', '').str.replace('E', '').str.replace(':', '').str.replace('M', '').str.replace('?', '').str.replace('t', '').str.replace('+', '').str.replace(';', '').str.replace('g', '').str.replace('^', '').str.replace('m', '').str.replace('/', '').str.replace('#', '').str.replace("'", '').str.replace('w', '').str.replace('"', '').str.replace('%', '').str.replace('r', '').str.replace('-', '').str.replace('v', '').str.replace(',', '').str.replace('·', '').str.replace(':', '').str.replace(' ', '').str.replace('*', '').str.replace('~', '').str.replace('V', '')
final_csv['Deposit'] = final_csv['Deposit'].apply(remove_dots)
final_csv['Deposit'] = final_csv['Deposit'].astype(float)
final_csv['*Amount'] = final_csv['Withdrawal'].fillna(0) + final_csv['Deposit'].fillna(0)
final_csv = final_csv.drop(['Withdrawal','Deposit'], axis=1)
final_csv['Payee'] = ''
final_csv['Description'] = final_csv['Transaction_Details']
final_csv.loc[final_csv['Three'].notnull(), 'Description'] += " "+final_csv['Three']
final_csv = final_csv.drop(['Transaction_Details','Three'], axis=1)
final_csv['Reference'] = ''
final_csv['Check Number'] = ''
df = final_csv[['*Date', '*Amount', 'Payee', 'Description','Reference','Check Number']]
df = df[df['*Amount'] != 0]
csv = convert_df(df)
st.dataframe(df)
st.download_button(
"Press to Download",
csv,
"file.csv",
"text/csv",
key='download-csv'
)
#success = st.button("Extract", on_click=model, args=[uploaded, filter])
|