File size: 9,582 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
from functools import cache

# pylint: disable=protected-access, missing-function-docstring, line-too-long

# ARC GPUs can't allocate more than 4GB to a single block so we slice the attetion layers

sdpa_slice_trigger_rate = float(os.environ.get('IPEX_SDPA_SLICE_TRIGGER_RATE', 6))
attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4))

# Find something divisible with the input_tokens
@cache
def find_slice_size(slice_size, slice_block_size):
    while (slice_size * slice_block_size) > attention_slice_rate:
        slice_size = slice_size // 2
        if slice_size <= 1:
            slice_size = 1
            break
    return slice_size

# Find slice sizes for SDPA
@cache
def find_sdpa_slice_sizes(query_shape, query_element_size):
    if len(query_shape) == 3:
        batch_size_attention, query_tokens, shape_three = query_shape
        shape_four = 1
    else:
        batch_size_attention, query_tokens, shape_three, shape_four = query_shape

    slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size
    block_size = batch_size_attention * slice_block_size

    split_slice_size = batch_size_attention
    split_2_slice_size = query_tokens
    split_3_slice_size = shape_three

    do_split = False
    do_split_2 = False
    do_split_3 = False

    if block_size > sdpa_slice_trigger_rate:
        do_split = True
        split_slice_size = find_slice_size(split_slice_size, slice_block_size)
        if split_slice_size * slice_block_size > attention_slice_rate:
            slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size
            do_split_2 = True
            split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
            if split_2_slice_size * slice_2_block_size > attention_slice_rate:
                slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size
                do_split_3 = True
                split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)

    return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size

# Find slice sizes for BMM
@cache
def find_bmm_slice_sizes(input_shape, input_element_size, mat2_shape):
    batch_size_attention, input_tokens, mat2_atten_shape = input_shape[0], input_shape[1], mat2_shape[2]
    slice_block_size = input_tokens * mat2_atten_shape / 1024 / 1024 * input_element_size
    block_size = batch_size_attention * slice_block_size

    split_slice_size = batch_size_attention
    split_2_slice_size = input_tokens
    split_3_slice_size = mat2_atten_shape

    do_split = False
    do_split_2 = False
    do_split_3 = False

    if block_size > attention_slice_rate:
        do_split = True
        split_slice_size = find_slice_size(split_slice_size, slice_block_size)
        if split_slice_size * slice_block_size > attention_slice_rate:
            slice_2_block_size = split_slice_size * mat2_atten_shape / 1024 / 1024 * input_element_size
            do_split_2 = True
            split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
            if split_2_slice_size * slice_2_block_size > attention_slice_rate:
                slice_3_block_size = split_slice_size * split_2_slice_size / 1024 / 1024 * input_element_size
                do_split_3 = True
                split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)

    return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size


original_torch_bmm = torch.bmm
def torch_bmm_32_bit(input, mat2, *, out=None):
    if input.device.type != "xpu":
        return original_torch_bmm(input, mat2, out=out)
    do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_bmm_slice_sizes(input.shape, input.element_size(), mat2.shape)

    # Slice BMM
    if do_split:
        batch_size_attention, input_tokens, mat2_atten_shape = input.shape[0], input.shape[1], mat2.shape[2]
        hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype)
        for i in range(batch_size_attention // split_slice_size):
            start_idx = i * split_slice_size
            end_idx = (i + 1) * split_slice_size
            if do_split_2:
                for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name
                    start_idx_2 = i2 * split_2_slice_size
                    end_idx_2 = (i2 + 1) * split_2_slice_size
                    if do_split_3:
                        for i3 in range(mat2_atten_shape // split_3_slice_size): # pylint: disable=invalid-name
                            start_idx_3 = i3 * split_3_slice_size
                            end_idx_3 = (i3 + 1) * split_3_slice_size
                            hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_torch_bmm(
                                input[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
                                mat2[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
                                out=out
                            )
                    else:
                        hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm(
                            input[start_idx:end_idx, start_idx_2:end_idx_2],
                            mat2[start_idx:end_idx, start_idx_2:end_idx_2],
                            out=out
                        )
            else:
                hidden_states[start_idx:end_idx] = original_torch_bmm(
                    input[start_idx:end_idx],
                    mat2[start_idx:end_idx],
                    out=out
                )
        torch.xpu.synchronize(input.device)
    else:
        return original_torch_bmm(input, mat2, out=out)
    return hidden_states

original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, **kwargs):
    if query.device.type != "xpu":
        return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
    do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_sdpa_slice_sizes(query.shape, query.element_size())

    # Slice SDPA
    if do_split:
        batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2]
        hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
        for i in range(batch_size_attention // split_slice_size):
            start_idx = i * split_slice_size
            end_idx = (i + 1) * split_slice_size
            if do_split_2:
                for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
                    start_idx_2 = i2 * split_2_slice_size
                    end_idx_2 = (i2 + 1) * split_2_slice_size
                    if do_split_3:
                        for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name
                            start_idx_3 = i3 * split_3_slice_size
                            end_idx_3 = (i3 + 1) * split_3_slice_size
                            hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_scaled_dot_product_attention(
                                query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
                                key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
                                value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
                                attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attn_mask is not None else attn_mask,
                                dropout_p=dropout_p, is_causal=is_causal, **kwargs
                            )
                    else:
                        hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention(
                            query[start_idx:end_idx, start_idx_2:end_idx_2],
                            key[start_idx:end_idx, start_idx_2:end_idx_2],
                            value[start_idx:end_idx, start_idx_2:end_idx_2],
                            attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask,
                            dropout_p=dropout_p, is_causal=is_causal, **kwargs
                        )
            else:
                hidden_states[start_idx:end_idx] = original_scaled_dot_product_attention(
                    query[start_idx:end_idx],
                    key[start_idx:end_idx],
                    value[start_idx:end_idx],
                    attn_mask=attn_mask[start_idx:end_idx] if attn_mask is not None else attn_mask,
                    dropout_p=dropout_p, is_causal=is_causal, **kwargs
                )
        torch.xpu.synchronize(query.device)
    else:
        return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
    return hidden_states