File size: 11,463 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import math
from PIL import Image, ImageChops, ImageDraw
from modules import shared, errors, images


FONT_SIZE=48


def test_processors(image):
    from modules.control import processors
    if image is None:
        shared.log.error('Image not loaded')
        return None, None, None
    res = []
    for processor_id in processors.list_models():
        if shared.state.interrupted:
            continue
        shared.log.info(f'Testing processor: {processor_id}')
        processor = processors.Processor(processor_id)
        output = image
        if processor is None:
            shared.log.error(f'Processor load failed: id="{processor_id}"')
            processor_id = f'{processor_id} error'
        else:
            output = processor(image)
            if shared.opts.control_unload_processor:
                processor.reset()
        if output.size != image.size:
            output = output.resize(image.size, Image.Resampling.LANCZOS)
        if output.mode != image.mode:
            output = output.convert(image.mode)
        shared.log.debug(f'Testing processor: input={image} mode={image.mode} output={output} mode={output.mode}')
        diff = ImageChops.difference(image, output)
        if not diff.getbbox():
            processor_id = f'{processor_id} null'
        draw = ImageDraw.Draw(output)
        font = images.get_font(FONT_SIZE)
        draw.text((10, 10), processor_id, (0,0,0), font=font)
        draw.text((8, 8), processor_id, (255,255,255), font=font)
        res.append(output)
        yield output, None, None, res
    rows = round(math.sqrt(len(res)))
    cols = math.ceil(len(res) / rows)
    w, h = 256, 256
    size = (cols * w + cols, rows * h + rows)
    grid = Image.new('RGB', size=size, color='black')
    shared.log.info(f'Test processors: images={len(res)} grid={grid}')
    for i, image in enumerate(res):
        x = (i % cols * w) + (i % cols)
        y = (i // cols * h) + (i // cols)
        thumb = image.copy().convert('RGB')
        thumb.thumbnail((w, h), Image.Resampling.HAMMING)
        grid.paste(thumb, box=(x, y))
    yield None, grid, None, res
    return None, grid, None, res # preview_process, output_image, output_video, output_gallery


def test_controlnets(prompt, negative, image):
    from modules import devices, sd_models
    from modules.control.units import controlnet
    if image is None:
        shared.log.error('Image not loaded')
        return None, None, None
    res = []
    for model_id in controlnet.list_models():
        if model_id is None:
            model_id = 'None'
        if shared.state.interrupted:
            continue
        output = image
        if model_id != 'None':
            controlnet = controlnet.ControlNet(model_id=model_id, device=devices.device, dtype=devices.dtype)
            if controlnet is None:
                shared.log.error(f'ControlNet load failed: id="{model_id}"')
                continue
            shared.log.info(f'Testing ControlNet: {model_id}')
            pipe = controlnet.ControlNetPipeline(controlnet=controlnet.model, pipeline=shared.sd_model)
            pipe.pipeline.to(device=devices.device, dtype=devices.dtype)
            sd_models.set_diffuser_options(pipe)
            try:
                output = pipe.pipeline(prompt=prompt, negative_prompt=negative, image=image, num_inference_steps=10, output_type='pil')
                output = output.images[0]
            except Exception as e:
                errors.display(e, f'ControlNet {model_id} inference')
                model_id = f'{model_id} error'
            pipe.restore()
        draw = ImageDraw.Draw(output)
        font = images.get_font(FONT_SIZE)
        draw.text((10, 10), model_id, (0,0,0), font=font)
        draw.text((8, 8), model_id, (255,255,255), font=font)
        res.append(output)
        yield output, None, None, res
    rows = round(math.sqrt(len(res)))
    cols = math.ceil(len(res) / rows)
    w, h = 256, 256
    size = (cols * w + cols, rows * h + rows)
    grid = Image.new('RGB', size=size, color='black')
    shared.log.info(f'Test ControlNets: images={len(res)} grid={grid}')
    for i, image in enumerate(res):
        x = (i % cols * w) + (i % cols)
        y = (i // cols * h) + (i // cols)
        thumb = image.copy().convert('RGB')
        thumb.thumbnail((w, h), Image.Resampling.HAMMING)
        grid.paste(thumb, box=(x, y))
    yield None, grid, None, res
    return None, grid, None, res # preview_process, output_image, output_video, output_gallery


def test_adapters(prompt, negative, image):
    from modules import devices, sd_models
    from modules.control.units import t2iadapter
    if image is None:
        shared.log.error('Image not loaded')
        return None, None, None
    res = []
    for model_id in t2iadapter.list_models():
        if model_id is None:
            model_id = 'None'
        if shared.state.interrupted:
            continue
        output = image.copy()
        if model_id != 'None':
            adapter = t2iadapter.Adapter(model_id=model_id, device=devices.device, dtype=devices.dtype)
            if adapter is None:
                shared.log.error(f'Adapter load failed: id="{model_id}"')
                continue
            shared.log.info(f'Testing Adapter: {model_id}')
            pipe = t2iadapter.AdapterPipeline(adapter=adapter.model, pipeline=shared.sd_model)
            pipe.pipeline.to(device=devices.device, dtype=devices.dtype)
            sd_models.set_diffuser_options(pipe)
            image = image.convert('L') if 'Canny' in model_id or 'Sketch' in model_id else image.convert('RGB')
            try:
                output = pipe.pipeline(prompt=prompt, negative_prompt=negative, image=image, num_inference_steps=10, output_type='pil')
                output = output.images[0]
            except Exception as e:
                errors.display(e, f'Adapter {model_id} inference')
                model_id = f'{model_id} error'
            pipe.restore()
        draw = ImageDraw.Draw(output)
        font = images.get_font(FONT_SIZE)
        draw.text((10, 10), model_id, (0,0,0), font=font)
        draw.text((8, 8), model_id, (255,255,255), font=font)
        res.append(output)
        yield output, None, None, res
    rows = round(math.sqrt(len(res)))
    cols = math.ceil(len(res) / rows)
    w, h = 256, 256
    size = (cols * w + cols, rows * h + rows)
    grid = Image.new('RGB', size=size, color='black')
    shared.log.info(f'Test Adapters: images={len(res)} grid={grid}')
    for i, image in enumerate(res):
        x = (i % cols * w) + (i % cols)
        y = (i // cols * h) + (i // cols)
        thumb = image.copy().convert('RGB')
        thumb.thumbnail((w, h), Image.Resampling.HAMMING)
        grid.paste(thumb, box=(x, y))
    yield None, grid, None, res
    return None, grid, None, res # preview_process, output_image, output_video, output_gallery


def test_xs(prompt, negative, image):
    from modules import devices, sd_models
    from modules.control.units import xs
    if image is None:
        shared.log.error('Image not loaded')
        return None, None, None
    res = []
    for model_id in xs.list_models():
        if model_id is None:
            model_id = 'None'
        if shared.state.interrupted:
            continue
        output = image
        if model_id != 'None':
            xs = xs.ControlNetXS(model_id=model_id, device=devices.device, dtype=devices.dtype)
            if xs is None:
                shared.log.error(f'ControlNet-XS load failed: id="{model_id}"')
                continue
            shared.log.info(f'Testing ControlNet-XS: {model_id}')
            pipe = xs.ControlNetXSPipeline(controlnet=xs.model, pipeline=shared.sd_model)
            pipe.pipeline.to(device=devices.device, dtype=devices.dtype)
            sd_models.set_diffuser_options(pipe)
            try:
                output = pipe.pipeline(prompt=prompt, negative_prompt=negative, image=image, num_inference_steps=10, output_type='pil')
                output = output.images[0]
            except Exception as e:
                errors.display(e, f'ControlNet-XS {model_id} inference')
                model_id = f'{model_id} error'
            pipe.restore()
        draw = ImageDraw.Draw(output)
        font = images.get_font(FONT_SIZE)
        draw.text((10, 10), model_id, (0,0,0), font=font)
        draw.text((8, 8), model_id, (255,255,255), font=font)
        res.append(output)
        yield output, None, None, res
    rows = round(math.sqrt(len(res)))
    cols = math.ceil(len(res) / rows)
    w, h = 256, 256
    size = (cols * w + cols, rows * h + rows)
    grid = Image.new('RGB', size=size, color='black')
    shared.log.info(f'Test ControlNet-XS: images={len(res)} grid={grid}')
    for i, image in enumerate(res):
        x = (i % cols * w) + (i % cols)
        y = (i // cols * h) + (i // cols)
        thumb = image.copy().convert('RGB')
        thumb.thumbnail((w, h), Image.Resampling.HAMMING)
        grid.paste(thumb, box=(x, y))
    yield None, grid, None, res
    return None, grid, None, res # preview_process, output_image, output_video, output_gallery


def test_lite(prompt, negative, image):
    from modules import devices, sd_models
    from modules.control.units import lite
    if image is None:
        shared.log.error('Image not loaded')
        return None, None, None
    res = []
    for model_id in lite.list_models():
        if model_id is None:
            model_id = 'None'
        if shared.state.interrupted:
            continue
        output = image
        if model_id != 'None':
            lite = lite.ControlLLLite(model_id=model_id, device=devices.device, dtype=devices.dtype)
            if lite is None:
                shared.log.error(f'Control-LLite load failed: id="{model_id}"')
                continue
            shared.log.info(f'Testing ControlNet-XS: {model_id}')
            pipe = lite.ControlLLitePipeline(pipeline=shared.sd_model)
            pipe.apply(controlnet=lite.model, image=image, conditioning=1.0)
            pipe.pipeline.to(device=devices.device, dtype=devices.dtype)
            sd_models.set_diffuser_options(pipe)
            try:
                output = pipe.pipeline(prompt=prompt, negative_prompt=negative, image=image, num_inference_steps=10, output_type='pil')
                output = output.images[0]
            except Exception as e:
                errors.display(e, f'ControlNet-XS {model_id} inference')
                model_id = f'{model_id} error'
            pipe.restore()
        draw = ImageDraw.Draw(output)
        font = images.get_font(FONT_SIZE)
        draw.text((10, 10), model_id, (0,0,0), font=font)
        draw.text((8, 8), model_id, (255,255,255), font=font)
        res.append(output)
        yield output, None, None, res
    rows = round(math.sqrt(len(res)))
    cols = math.ceil(len(res) / rows)
    w, h = 256, 256
    size = (cols * w + cols, rows * h + rows)
    grid = Image.new('RGB', size=size, color='black')
    shared.log.info(f'Test ControlNet-XS: images={len(res)} grid={grid}')
    for i, image in enumerate(res):
        x = (i % cols * w) + (i % cols)
        y = (i // cols * h) + (i // cols)
        thumb = image.copy().convert('RGB')
        thumb.thumbnail((w, h), Image.Resampling.HAMMING)
        grid.paste(thumb, box=(x, y))
    yield None, grid, None, res
    return None, grid, None, res # preview_process, output_image, output_video, output_gallery