Spaces:
Paused
Paused
File size: 13,070 Bytes
8221951 7209bc9 6c25d13 7209bc9 fa9f1ec 8221951 7209bc9 920a2a0 7209bc9 2e2eeaa 17fa222 7209bc9 2e2eeaa 7209bc9 920a2a0 7209bc9 2e2eeaa 7209bc9 2e2eeaa fa9f1ec 8221951 fa9f1ec 8221951 6c25d13 8221951 6c25d13 8221951 6c25d13 8221951 6c25d13 8221951 6c25d13 da246ad 6c25d13 da246ad 6c25d13 da246ad 6c25d13 31a66c1 6c25d13 31a66c1 6c25d13 da246ad 8221951 6c25d13 da246ad 6c25d13 da246ad 6c25d13 8221951 6c25d13 da246ad 6c25d13 8221951 6c25d13 da246ad 8221951 da246ad 8221951 da246ad fa9f1ec da246ad fa9f1ec 6c25d13 fa9f1ec 6c25d13 fa9f1ec 6c25d13 fa9f1ec 6c25d13 da246ad fa9f1ec 8221951 fa9f1ec 8221951 fa9f1ec da246ad fa9f1ec 8221951 7b606e4 8221951 da246ad fa9f1ec da246ad fa9f1ec da246ad 8221951 da246ad d6e116f da246ad d6e116f da246ad d6e116f da246ad d6e116f 2eb2fa2 da246ad fa9f1ec da246ad fa9f1ec da246ad fa9f1ec 8221951 da246ad 394e502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import json
import os
import gradio as gr
import requests
from huggingface_hub import HfApi
import traceback
hf_api = HfApi()
roots_datasets = {
dset.id.split("/")[-1]: dset
for dset in hf_api.list_datasets(
author="bigscience-data", use_auth_token=os.environ.get("bigscience_data_token")
)
}
def get_docid_html(docid):
data_org, dataset, docid = docid.split("/")
metadata = roots_datasets[dataset]
if metadata.private:
docid_html = (
f"<a "
f'class="underline-on-hover"'
f'title="This dataset is private. See the introductory text for more information"'
f'style="color:#AA4A44;"'
f'href="https://huggingface.co/datasets/bigscience-data/{dataset}"'
f'target="_blank"><b>π{dataset}</b></a><span style="color: #7978FF;">/{docid}</span>'
)
else:
docid_html = (
f"<a "
f'class="underline-on-hover"'
f'title="This dataset is licensed {metadata.tags[0].split(":")[-1]}"'
f'style="color:#2D31FA;"'
f'href="https://huggingface.co/datasets/bigscience-data/{dataset}"'
f'target="_blank"><b>{dataset}</b></a><span style="color: #7978FF;">/{docid}</span>'
)
return docid_html
PII_TAGS = {"KEY", "EMAIL", "USER", "IP_ADDRESS", "ID", "IPv4", "IPv6"}
PII_PREFIX = "PI:"
def process_pii(text):
for tag in PII_TAGS:
text = text.replace(
PII_PREFIX + tag,
"""<b><mark style="background: Fuchsia; color: Lime;">REDACTED {}</mark></b>""".format(
tag
),
)
return text
def format_meta(result):
meta_html = (
"""
<p class='underline-on-hover' style='font-size:12px; font-family: Arial; color:#585858; text-align: left;'>
<a href='{}' target='_blank'>{}</a></p>""".format(
result["meta"]["url"], result["meta"]["url"]
)
if "meta" in result and result["meta"] is not None and "url" in result["meta"]
else ""
)
docid_html = get_docid_html(result["docid"])
return """{}
<p style='font-size:14px; font-family: Arial; color:#7978FF; text-align: left;'>Document ID: {}</p>
<p style='font-size:12px; font-family: Arial; color:MediumAquaMarine'>Language: {}</p>
""".format(
meta_html,
docid_html,
result["lang"] if lang in result else None,
)
return meta_html
def process_results(results, highlight_terms):
if len(results) == 0:
return """<br><p style='font-family: Arial; color:Silver; text-align: center;'>
No results retrieved.</p><br><hr>"""
results_html = ""
for result in results:
tokens = result["text"].split()
tokens_html = []
for token in tokens:
if token in highlight_terms:
tokens_html.append("<b>{}</b>".format(token))
else:
tokens_html.append(token)
tokens_html = " ".join(tokens_html)
tokens_html = process_pii(tokens_html)
meta_html = format_meta(result)
meta_html += """
<p style='font-family: Arial;'>{}</p>
<br>
""".format(
tokens_html
)
results_html += meta_html
return results_html + "<hr>"
def process_exact_match_payload(payload, query):
datasets = set()
results = payload["results"]
results_html = (
"<p style='font-family: Arial;'>Total nubmer of results: {}</p>".format(
payload["num_results"]
)
)
for result in results:
_, dataset, _ = result["docid"].split("/")
datasets.add(dataset)
text = result["text"]
meta_html = format_meta(result)
query_start = text.find(query)
query_end = query_start + len(query)
tokens_html = text[0:query_start]
tokens_html += "<b>{}</b>".format(text[query_start:query_end])
tokens_html += text[query_end:]
result_html = (
meta_html
+ """
<p style='font-family: Arial;'>{}</p>
<br>
""".format(
tokens_html
)
)
results_html += result_html
return results_html + "<hr>", list(datasets)
def process_bm25_match_payload(payload, language):
if "err" in payload:
if payload["err"]["type"] == "unsupported_lang":
detected_lang = payload["err"]["meta"]["detected_lang"]
return f"""
<p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
Detected language <b>{detected_lang}</b> is not supported.<br>
Please choose a language from the dropdown or type another query.
</p><br><hr><br>"""
results = payload["results"]
highlight_terms = payload["highlight_terms"]
if language == "detect_language":
return (
(
(
f"""<p style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
Detected language: <b>{results[0]["lang"]}</b></p><br><hr><br>"""
if len(results) > 0 and language == "detect_language"
else ""
)
+ process_results(results, highlight_terms)
),
[],
)
if language == "all":
datasets = set()
get_docid_html(result["docid"])
results_html = ""
for lang, results_for_lang in results.items():
if len(results_for_lang) == 0:
results_html += f"""<p style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
No results for language: <b>{lang}</b><hr></p>"""
continue
collapsible_results = f"""
<details>
<summary style='font-family: Arial; color:MediumAquaMarine; text-align: left; line-height: 3em'>
Results for language: <b>{lang}</b><hr>
</summary>
{process_results(results_for_lang, highlight_terms)}
</details>"""
results_html += collapsible_results
for r in results_for_lang:
_, dataset, _ = r["docid"].split("/")
datasets.add(dataset)
return results_html, list(datasets)
datasets = set()
for r in results:
_, dataset, _ = r["docid"].split("/")
datasets.add(dataset)
return process_results(results, highlight_terms), list(datasets)
def scisearch(query, language, num_results=10):
datasets = []
try:
query = query.strip()
exact_search = False
if query.startswith('"') and query.endswith('"') and len(query) >= 2:
exact_search = True
query = query[1:-1]
else:
query = " ".join(query.split())
if query == "" or query is None:
return ""
post_data = {"query": query, "k": num_results}
if language != "detect_language":
post_data["lang"] = language
address = (
"http://34.105.160.81:8080" if exact_search else os.environ.get("address")
)
output = requests.post(
address,
headers={"Content-type": "application/json"},
data=json.dumps(post_data),
timeout=60,
)
payload = json.loads(output.text)
return (
process_bm25_match_payload(payload, language)
if not exact_search
else process_exact_match_payload(payload, query)
)
except Exception as e:
results_html = f"""
<p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
Raised {type(e).__name__}</p>
<p style='font-size:14px; font-family: Arial; '>
Check if a relevant discussion already exists in the Community tab. If not, please open a discussion.
</p>
"""
print(e)
print(traceback.format_exc())
return results_html, datasets
def flag(query, language, num_results, issue_description):
try:
post_data = {
"query": query,
"k": num_results,
"flag": True,
"description": issue_description,
}
if language != "detect_language":
post_data["lang"] = language
output = requests.post(
os.environ.get("address"),
headers={"Content-type": "application/json"},
data=json.dumps(post_data),
timeout=120,
)
results = json.loads(output.text)
except:
print("Error flagging")
return ""
description = """# <p style="text-align: center;"> πΈ π ROOTS search tool π πΈ </p>
The ROOTS corpus was developed during the [BigScience workshop](https://bigscience.huggingface.co/) for the purpose
of training the Multilingual Large Language Model [BLOOM](https://huggingface.co/bigscience/bloom). This tool allows
you to search through the ROOTS corpus. We serve a BM25 index for each language or group of languages included in
ROOTS. You can read more about the details of the tool design
[here](https://huggingface.co/spaces/bigscience-data/scisearch/blob/main/roots_search_tool_specs.pdf). For more
information and instructions on how to access the full corpus check [this form](https://forms.gle/qyYswbEL5kA23Wu99)."""
if __name__ == "__main__":
demo = gr.Blocks(
css=".underline-on-hover:hover { text-decoration: underline; } .flagging { font-size:12px; color:Silver; }"
)
with demo:
with gr.Row():
gr.Markdown(value=description)
with gr.Row():
query = gr.Textbox(
lines=1,
max_lines=1,
placeholder="Put your query in double quotes for exact search.",
label="Query",
)
with gr.Row():
lang = gr.Dropdown(
choices=[
"ar",
"ca",
"code",
"en",
"es",
"eu",
"fr",
"id",
"indic",
"nigercongo",
"pt",
"vi",
"zh",
"detect_language",
"all",
],
value="en",
label="Language",
)
with gr.Row():
k = gr.Slider(1, 100, value=10, step=1, label="Max Results")
with gr.Row():
"""
with gr.Column(scale=1):
exact_search = gr.Checkbox(
value=False, label="Exact Search", variant="compact"
)
"""
with gr.Column(scale=4):
submit_btn = gr.Button("Submit")
with gr.Row(visible=False) as datasets_filter:
available_datasets = gr.Dropdown(
type="value",
choices=["ran", "swam", "ate", "slept"],
label="Datasets",
multiselect=True,
)
with gr.Row():
results = gr.HTML(label="Results")
with gr.Column(visible=False) as flagging_form:
flag_txt = gr.Textbox(
lines=1,
placeholder="Type here...",
label="""If you choose to flag your search, we will save the query, language and the number of results
you requested. Please consider adding relevant additional context below:""",
)
flag_btn = gr.Button("Flag Results")
flag_btn.click(flag, inputs=[query, lang, k, flag_txt], outputs=[flag_txt])
def submit(query, lang, k, dropdown_input):
print("submitting", query, lang, k)
query = query.strip()
if query is None or query == "":
return "", ""
results_html, datasets = scisearch(query, lang, k)
print(datasets)
return {
results: results_html,
flagging_form: gr.update(visible=True),
datasets_filter: gr.update(visible=True),
available_datasets: gr.Dropdown.update(choices=datasets),
}
def filter_datasets():
pass
query.submit(
fn=submit,
inputs=[query, lang, k, available_datasets],
outputs=[results, flagging_form, datasets_filter, available_datasets],
)
submit_btn.click(
submit,
inputs=[query, lang, k, available_datasets],
outputs=[results, flagging_form, datasets_filter, available_datasets],
)
available_datasets.change(filter_datasets, inputs=[], outputs=[])
demo.launch(enable_queue=True, debug=True)
|