Spaces:
Paused
Paused
File size: 18,333 Bytes
8221951 014aa64 8221951 7209bc9 fa9f1ec 8221951 7209bc9 be21dae 7209bc9 d41febc be21dae d41febc be21dae 7209bc9 d41febc be21dae d41febc be21dae fa9f1ec 8221951 fa9f1ec 8221951 a113452 f83ce33 014aa64 f83ce33 014aa64 8221951 014aa64 8221951 cbab981 da246ad 014aa64 a113452 cbab981 a113452 be21dae cbab981 a113452 da246ad cbab981 8221951 6c25d13 553d6f1 ab4e5c8 553d6f1 ab4e5c8 a113452 ab4e5c8 553d6f1 ab4e5c8 553d6f1 ab4e5c8 553d6f1 ab4e5c8 553d6f1 8221951 014aa64 ab4e5c8 f83ce33 014aa64 a113452 014aa64 ab4e5c8 014aa64 ab4e5c8 8221951 f83ce33 8221951 014aa64 a113452 014aa64 aca9622 014aa64 8221951 a668474 8221951 be21dae 8221951 f83ce33 aca9622 f83ce33 a668474 8221951 fa9f1ec da246ad fa9f1ec 8221951 fc227b9 ab4e5c8 fc227b9 be21dae 8221951 f83ce33 da246ad e7386b4 2cc82f7 f83ce33 da246ad 35b3cef 553d6f1 ab4e5c8 aca9622 8221951 be21dae d6e116f 014aa64 a113452 014aa64 aca9622 014aa64 a113452 f83ce33 aca9622 a113452 ab4e5c8 f83ce33 aca9622 a113452 aca9622 be21dae a113452 aca9622 a113452 aca9622 a113452 be21dae ab4e5c8 553d6f1 a113452 ab4e5c8 f83ce33 aca9622 a113452 aca9622 a113452 aca9622 a113452 1f58c5b a949c83 1f58c5b ab4e5c8 1f58c5b a113452 ab4e5c8 2eb2fa2 f83ce33 553d6f1 f83ce33 553d6f1 da246ad fa9f1ec be21dae f83ce33 aca9622 553d6f1 ab4e5c8 fa9f1ec be21dae aca9622 553d6f1 ab4e5c8 aca9622 f83ce33 aca9622 553d6f1 ab4e5c8 fa9f1ec 8221951 f83ce33 553d6f1 35b3cef 394e502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import json
import os
import traceback
from typing import List, Tuple
import gradio as gr
import requests
from huggingface_hub import HfApi
hf_api = HfApi()
roots_datasets = {
dset.id.split("/")[-1]: dset
for dset in hf_api.list_datasets(
author="bigscience-data", use_auth_token=os.environ.get("bigscience_data_token")
)
}
def get_docid_html(docid):
data_org, dataset, docid = docid.split("/")
metadata = roots_datasets[dataset]
locked_color = "LightGray"
open_color = "#7978FF"
if metadata.private:
docid_html = """
<a title="This dataset is private. See the introductory text for more information"
style="color:{locked_color}; font-weight: bold; text-decoration:none"
onmouseover="style='color:{locked_color}; font-weight: bold; text-decoration:underline'"
onmouseout="style='color:{locked_color}; font-weight: bold; text-decoration:none'"
href="https://huggingface.co/datasets/bigscience-data/{dataset}"
target="_blank">
π{dataset}
</a>
<span style="color:{open_color}; ">/{docid}</span>""".format(
dataset=dataset,
docid=docid,
locked_color=locked_color,
open_color=open_color,
)
else:
docid_html = """
<a title="This dataset is licensed {metadata}"
style="color:{open_color}; font-weight: bold; text-decoration:none"
onmouseover="style='color:{open_color}; font-weight: bold; text-decoration:underline'"
onmouseout="style='color:{open_color}; font-weight: bold; text-decoration:none'"
href="https://huggingface.co/datasets/bigscience-data/{dataset}"
target="_blank">
{dataset}
</a>
<span style="color:{open_color}; ">/{docid}</span>""".format(
metadata=metadata.tags[0].split(":")[-1],
dataset=dataset,
docid=docid,
open_color=open_color,
)
return docid_html
PII_TAGS = {"KEY", "EMAIL", "USER", "IP_ADDRESS", "ID", "IPv4", "IPv6"}
PII_PREFIX = "PI:"
def process_pii(text):
for tag in PII_TAGS:
text = text.replace(
PII_PREFIX + tag,
"""<b><mark style="background: Fuchsia; color: Lime;">REDACTED {}</mark></b>""".format(
tag
),
)
return text
def extract_lang_from_docid(docid):
return docid.split("_")[1]
def format_result(result, highlight_terms, exact_search, datasets_filter=None):
text, url, docid = result
if datasets_filter is not None:
datasets_filter = set(datasets_filter)
dataset = docid.split("/")[1]
if not dataset in datasets_filter:
return ""
if exact_search:
query_start = text.find(highlight_terms)
query_end = query_start + len(highlight_terms)
tokens_html = text[0:query_start]
tokens_html += "<b>{}</b>".format(text[query_start:query_end])
tokens_html += text[query_end:]
else:
tokens = text.split()
tokens_html = []
for token in tokens:
if token in highlight_terms:
tokens_html.append("<b>{}</b>".format(token))
else:
tokens_html.append(token)
tokens_html = " ".join(tokens_html)
tokens_html = process_pii(tokens_html)
url_html = (
"""
<span style='font-size:12px; font-family: Arial; color:Silver; text-align: left;'>
<a style='text-decoration:none; color:Silver;'
onmouseover="style='text-decoration:underline; color:Silver;'"
onmouseout="style='text-decoration:none; color:Silver;'"
href='{url}'
target="_blank">
{url}
</a>
</span><br>
""".format(
url=url
)
if url is not None
else ""
)
docid_html = get_docid_html(docid)
language = extract_lang_from_docid(docid)
result_html = """{}
<span style='font-size:14px; font-family: Arial; color:MediumAquaMarine'>Language: {} | </span>
<span style='font-size:14px; font-family: Arial; color:#7978FF; text-align: left;'>Document ID: {} | </span>
<a href="https://forms.gle/AdBLLwRApqcLkHYA8" target="_blank">
<button style="color:#ffcdf8; ">π΄ββ οΈ Flag result π΄ββ οΈ</button>
</a><br>
<span style='font-family: Arial;'>{}</span><br>
<br>
""".format(
url_html, language, docid_html, tokens_html
)
return "<p>" + result_html + "</p>"
def format_result_page(
language, results, highlight_terms, num_results, exact_search, datasets_filter=None
) -> gr.HTML:
filtered_num_results = 0
header_html = ""
if language == "detect_language" and not exact_search:
header_html += """<div style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
Detected language: <b style='color:MediumAquaMarine'>{}</b></div>""".format(
list(results.keys())[0]
)
result_page_html = ""
for lang, results_for_lang in results.items():
print("Processing language", lang)
if len(results_for_lang) == 0:
if exact_search:
result_page_html += """<div style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
No results found.</div>"""
else:
result_page_html += """<div style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
No results for language: <b>{}</b></div>""".format(
lang
)
continue
results_for_lang_html = ""
for result in results_for_lang:
result_html = format_result(
result, highlight_terms, exact_search, datasets_filter
)
if result_html != "":
filtered_num_results += 1
results_for_lang_html += result_html
if language == "all" and not exact_search:
results_for_lang_html = f"""
<details>
<summary style='font-family: Arial; color:MediumAquaMarine; text-align: left; line-height: 3em'>
Results for language: <b>{lang}</b>
</summary>
{results_for_lang_html}
</details>"""
result_page_html += results_for_lang_html
if num_results is not None:
header_html += """<div style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
Total number of matches: <b style='color:MediumAquaMarine'>{}</b></div>""".format(
num_results
)
return header_html + result_page_html
def extract_results_from_payload(query, language, payload, exact_search):
results = payload["results"]
processed_results = dict()
datasets = set()
highlight_terms = None
num_results = None
if exact_search:
highlight_terms = query
num_results = payload["num_results"]
results = {"dummy": results}
else:
highlight_terms = payload["highlight_terms"]
for lang, results_for_lang in results.items():
processed_results[lang] = list()
for result in results_for_lang:
text = result["text"]
url = (
result["meta"]["url"]
if "meta" in result
and result["meta"] is not None
and "url" in result["meta"]
else None
)
docid = result["docid"]
_, dataset, _ = docid.split("/")
datasets.add(dataset)
processed_results[lang].append((text, url, docid))
return processed_results, highlight_terms, num_results, list(datasets)
def no_query_error_message():
return f"""
<p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
Please provide a non-empty query.
</p><br><hr><br>"""
def process_error(error_type, payload):
if error_type == "unsupported_lang":
detected_lang = payload["err"]["meta"]["detected_lang"]
return f"""
<p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
Detected language <b>{detected_lang}</b> is not supported.<br>
Please choose a language from the dropdown or type another query.
</p><br><hr><br>"""
def extract_error_from_payload(payload):
if "err" in payload:
return payload["err"]["type"]
return None
def request_payload(query, language, exact_search, num_results=10, received_results=0):
post_data = {"query": query, "k": num_results, "received_results": received_results}
if language != "detect_language":
post_data["lang"] = language
address = "http://34.105.160.81:8080" if exact_search else os.environ.get("address")
output = requests.post(
address,
headers={"Content-type": "application/json"},
data=json.dumps(post_data),
timeout=60,
)
payload = json.loads(output.text)
return payload
title = (
"""<p style="text-align: center; font-size:28px"> πΈ π ROOTS search tool π πΈ </p>"""
)
description = """
The ROOTS corpus was developed during the [BigScience workshop](https://bigscience.huggingface.co/) for the purpose
of training the Multilingual Large Language Model [BLOOM](https://huggingface.co/bigscience/bloom). This tool allows
you to search through the ROOTS corpus. We serve a BM25 index for each language or group of languages included in
ROOTS. You can read more about the details of the tool design
[here](https://huggingface.co/spaces/bigscience-data/scisearch/blob/main/roots_search_tool_specs.pdf). For more
information and instructions on how to access the full corpus check [this form](https://forms.gle/qyYswbEL5kA23Wu99)."""
if __name__ == "__main__":
demo = gr.Blocks(css=".underline-on-hover:hover { text-decoration: underline; }")
with demo:
processed_results_state = gr.State([])
highlight_terms_state = gr.State([])
num_results_state = gr.State(0)
exact_search_state = gr.State(False)
lang_state = gr.State("")
received_results_state = gr.State(0)
with gr.Row():
gr.Markdown(value=title)
with gr.Row():
gr.Markdown(value=description)
with gr.Row():
query = gr.Textbox(
lines=1,
max_lines=1,
placeholder="Put your query in double quotes for exact search.",
label="Query",
)
with gr.Row():
lang = gr.Dropdown(
choices=[
"ar",
"ca",
"code",
"en",
"es",
"eu",
"fr",
"id",
"indic",
"nigercongo",
"pt",
"vi",
"zh",
"detect_language",
"all",
],
value="en",
label="Language",
)
k = gr.Slider(
1,
100,
value=10,
step=1,
label="Max Results in fuzzy search or Max Results per page in exact search",
)
with gr.Row():
submit_btn = gr.Button("Submit")
with gr.Row(visible=False) as datasets_filter:
available_datasets = gr.Dropdown(
type="value",
choices=[],
value=[],
label="Datasets Filter",
multiselect=True,
)
with gr.Row():
result_page_html = gr.HTML(label="Results")
with gr.Row(visible=False) as pagination:
next_page_btn = gr.Button("Next Page")
def run_query(query, lang, k, dropdown_input, received_results):
query = query.strip()
exact_search = False
if query.startswith('"') and query.endswith('"') and len(query) >= 2:
exact_search = True
query = query[1:-1]
else:
query = " ".join(query.split())
if query == "" or query is None:
return no_query_error_message()
payload = request_payload(query, lang, exact_search, k, received_results)
err = extract_error_from_payload(payload)
if err is not None:
return process_error(err, payload)
(
processed_results,
highlight_terms,
num_results,
ds,
) = extract_results_from_payload(
query,
lang,
payload,
exact_search,
)
result_page = format_result_page(
lang, processed_results, highlight_terms, num_results, exact_search
)
return (
processed_results,
highlight_terms,
num_results,
exact_search,
result_page,
ds,
)
def submit(query, lang, k, dropdown_input):
print("submitting", query, lang, k)
response = run_query(query, lang, k, dropdown_input, 0)
if not isinstance(response, tuple):
return {result_page_html: response}
(
processed_results,
highlight_terms,
num_results,
exact_search,
result_page,
datasets,
) = response
has_more_results = exact_search and (num_results > k)
return [
processed_results,
highlight_terms,
num_results,
exact_search,
gr.update(visible=True),
gr.Dropdown.update(choices=datasets, value=datasets),
gr.update(visible=has_more_results),
len(next(iter(processed_results.values()))),
result_page,
]
def next_page(
query,
lang,
k,
dropdown_input,
received_results,
processed_results,
):
response = run_query(query, lang, k, dropdown_input, received_results)
if not isinstance(response, tuple):
return {result_page_html: response}
(
processed_results,
highlight_terms,
num_results,
exact_search,
result_page,
datasets,
) = response
current_results = sum(
len(results) for results in processed_results.values()
)
has_more_results = exact_search and (
received_results + current_results < num_results
)
print("received_results", received_results)
print("current_results", current_results)
print("has_more_results", has_more_results)
return [
processed_results,
highlight_terms,
num_results,
exact_search,
gr.update(visible=True),
gr.Dropdown.update(choices=datasets, value=datasets),
gr.update(visible=current_results >= k and has_more_results),
received_results + current_results,
result_page,
]
def filter_datasets(
lang,
processed_results,
highlight_terms,
num_results,
exact_search,
datasets_filter,
):
result_page_html = format_result_page(
lang,
processed_results,
highlight_terms,
num_results,
exact_search,
datasets_filter,
)
return result_page_html
query.submit(
fn=submit,
inputs=[query, lang, k, available_datasets],
outputs=[
processed_results_state,
highlight_terms_state,
num_results_state,
exact_search_state,
datasets_filter,
available_datasets,
pagination,
received_results_state,
result_page_html,
],
)
submit_btn.click(
submit,
inputs=[query, lang, k, available_datasets],
outputs=[
processed_results_state,
highlight_terms_state,
num_results_state,
exact_search_state,
datasets_filter,
available_datasets,
pagination,
received_results_state,
result_page_html,
],
)
next_page_btn.click(
next_page,
inputs=[
query,
lang,
k,
available_datasets,
received_results_state,
processed_results_state,
],
outputs=[
processed_results_state,
highlight_terms_state,
num_results_state,
exact_search_state,
datasets_filter,
available_datasets,
pagination,
received_results_state,
result_page_html,
],
)
available_datasets.change(
filter_datasets,
inputs=[
lang,
processed_results_state,
highlight_terms_state,
num_results_state,
exact_search_state,
available_datasets,
],
outputs=result_page_html,
)
demo.launch(enable_queue=True, debug=True)
|