File size: 9,129 Bytes
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b606e4
 
 
 
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b606e4
 
 
 
 
 
 
 
8221951
 
 
 
 
7b606e4
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b606e4
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import http.client as http_client
import json
import logging
import os
import re
import string

import gradio as gr
import requests


def get_docid_html(docid):
    data_org, dataset, docid = docid.split("/")

    docid_html = """<a
        class="underline-on-hover"
        title="I am hovering over the text"
        style="color:#2D31FA;"
        href="https://huggingface.co/datasets/bigscience-data/{}"
        target="_blank">{}</a><span style="color: #7978FF;">/{}</span>""".format(
        dataset, data_org + "/" + dataset, docid
    )
    return docid_html


PII_TAGS = {"KEY", "EMAIL", "USER", "IP_ADDRESS", "ID", "IPv4", "IPv6"}
PII_PREFIX = "PI:"


def process_pii(text):
    for tag in PII_TAGS:
        text = text.replace(
            PII_PREFIX + tag,
            """<b><mark style="background: Fuchsia; color: Lime;">REDACTED {}</mark></b>""".format(tag),
        )
    return text


def process_results(results, highlight_terms):
    if len(results) == 0:
        return """<br><p style='font-family: Arial; color:Silver; text-align: center;'>
                No results retrieved.</p><br><hr>"""

    results_html = ""
    for result in results:
        tokens = result["text"].split()
        tokens_html = []
        for token in tokens:
            if token in highlight_terms:
                tokens_html.append("<b>{}</b>".format(token))
            else:
                tokens_html.append(token)
        tokens_html = " ".join(tokens_html)
        tokens_html = process_pii(tokens_html)
        meta_html = (
            """
                <p class='underline-on-hover' style='font-size:12px; font-family: Arial; color:#585858; text-align: left;'>
                <a href='{}' target='_blank'>{}</a></p>""".format(
                result["meta"]["url"], result["meta"]["url"]
            )
            if "meta" in result and result["meta"] is not None and "url" in result["meta"]
            else ""
        )
        docid_html = get_docid_html(result["docid"])
        results_html += """{}
            <p style='font-size:14px; font-family: Arial; color:#7978FF; text-align: left;'>Document ID: {}</p>
            <p style='font-size:12px; font-family: Arial; color:MediumAquaMarine'>Language: {}</p>
            <p style='font-family: Arial;'>{}</p>
            <br>
        """.format(
            meta_html, docid_html, result["lang"], tokens_html
        )
    return results_html + "<hr>"


def scisearch(query, language, num_results=10):
    try:
        query = query.strip()
        if query == "" or query is None:
            return

        post_data = {"query": query, "k": num_results}
        if language != "detect_language":
            post_data["lang"] = language

        output = requests.post(
            os.environ.get("address"),
            headers={"Content-type": "application/json"},
            data=json.dumps(post_data),
            timeout=60,
        )

        payload = json.loads(output.text)

        if "err" in payload:
            if payload["err"]["type"] == "unsupported_lang":
                detected_lang = payload["err"]["meta"]["detected_lang"]
                return f"""
                    <p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
                    Detected language <b>{detected_lang}</b> is not supported.<br>
                    Please choose a language from the dropdown or type another query.
                    </p><br><hr><br>"""

        results = payload["results"]
        highlight_terms = payload["highlight_terms"]

        if language == "detect_language":
            return (
                (
                    f"""<p style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
                Detected language: <b>{results[0]["lang"]}</b></p><br><hr><br>"""
                    if len(results) > 0 and language == "detect_language"
                    else ""
                )
                + process_results(results, highlight_terms)
            )

        if language == "all":
            results_html = ""
            for lang, results_for_lang in results.items():
                if len(results_for_lang) == 0:
                    results_html += f"""<p style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
                            No results for language: <b>{lang}</b><hr></p>"""
                    continue

                collapsible_results = f"""
                    <details>
                        <summary style='font-family: Arial; color:MediumAquaMarine; text-align: left; line-height: 3em'>
                            Results for language: <b>{lang}</b><hr>
                        </summary>
                        {process_results(results_for_lang, highlight_terms)}
                    </details>"""
                results_html += collapsible_results
            return results_html

        return process_results(results, highlight_terms)

    except Exception as e:
        results_html = f"""
                <p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
                Raised {type(e).__name__}</p>
                <p style='font-size:14px; font-family: Arial; '>
                Check if a relevant discussion already exists in the Community tab. If not, please open a discussion.
                </p>
            """

    return results_html


def flag(query, language, num_results, issue_description):
    try:
        post_data = {"query": query, "k": num_results, "flag": True, "description": issue_description}
        if language != "detect_language":
            post_data["lang"] = language

        output = requests.post(
            os.environ.get("address"),
            headers={"Content-type": "application/json"},
            data=json.dumps(post_data),
            timeout=120,
        )

        results = json.loads(output.text)
    except:
        print("Error flagging")
    return ""


description = """# <p style="text-align: center;"> 🌸 πŸ”Ž ROOTS search tool πŸ” 🌸 </p>
The ROOTS corpus was developed during the [BigScience workshop](https://bigscience.huggingface.co/) for the purpose
of training the Multilingual Large Language Model [BLOOM](https://huggingface.co/bigscience/bloom). This tool allows
you to search through the ROOTS corpus. We serve a BM25 index for each language or group of languages included in
ROOTS. You can read more about the details of the tool design
[here](https://huggingface.co/spaces/bigscience-data/scisearch/blob/main/roots_search_tool_specs.pdf). For more
information and instructions on how to access the full corpus check [this form](https://forms.gle/qyYswbEL5kA23Wu99)."""


if __name__ == "__main__":
    demo = gr.Blocks(
        css=".underline-on-hover:hover { text-decoration: underline; } .flagging { font-size:12px; color:Silver; }"
    )

    def submit(query, lang, k):
        if query == "":
            return ["", ""]
        return {
            results: scisearch(query, lang, k),
            flagging_form: gr.update(visible=True),
        }

    with demo:
        with gr.Row():
            gr.Markdown(value=description)
        with gr.Row():
            query = gr.Textbox(lines=2, placeholder="Type your query here...", label="Query")
            query.submit(fn=submit)
        with gr.Row():
            lang = gr.Dropdown(
                choices=[
                    "ar",
                    "ca",
                    "code",
                    "en",
                    "es",
                    "eu",
                    "fr",
                    "id",
                    "indic",
                    "nigercongo",
                    "pt",
                    "vi",
                    "zh",
                    "detect_language",
                    "all",
                ],
                value="en",
                label="Language",
            )
        with gr.Row():
            k = gr.Slider(1, 100, value=10, step=1, label="Max Results")
        with gr.Row():
            submit_btn = gr.Button("Submit")
        with gr.Row():
            results = gr.HTML(label="Results")
        flag_description = """
            <p class='flagging'>
            If you choose to flag your search, we will save the query, language and the number of results you requested.
            Please consider adding any additional context in the box on the right.</p>"""
        with gr.Column(visible=False) as flagging_form:
            flag_txt = gr.Textbox(
                lines=1,
                placeholder="Type here...",
                label="""If you choose to flag your search, we will save the query, language and the number of results
                    you requested. Please consider adding relevant additional context below:""",
            )
            flag_btn = gr.Button("Flag Results")
            flag_btn.click(flag, inputs=[query, lang, k, flag_txt], outputs=[flag_txt])

        submit_btn.click(submit, inputs=[query, lang, k], outputs=[results, flagging_form])

    demo.launch(enable_queue=True, debug=True)