File size: 10,225 Bytes
55cc64a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import numpy as np
import cv2
from functools import reduce
import math
import py3d_tools as p3d
import torch
from einops import rearrange
from .prompt import check_is_number

# Webui
from modules.shared import state

def sample_from_cv2(sample: np.ndarray) -> torch.Tensor:
    sample = ((sample.astype(float) / 255.0) * 2) - 1
    sample = sample[None].transpose(0, 3, 1, 2).astype(np.float16)
    sample = torch.from_numpy(sample)
    return sample

def sample_to_cv2(sample: torch.Tensor, type=np.uint8) -> np.ndarray:
    sample_f32 = rearrange(sample.squeeze().cpu().numpy(), "c h w -> h w c").astype(np.float32)
    sample_f32 = ((sample_f32 * 0.5) + 0.5).clip(0, 1)
    sample_int8 = (sample_f32 * 255)
    return sample_int8.astype(type)

def construct_RotationMatrixHomogenous(rotation_angles):
    assert(type(rotation_angles)==list and len(rotation_angles)==3)
    RH = np.eye(4,4)
    cv2.Rodrigues(np.array(rotation_angles), RH[0:3, 0:3])
    return RH

# https://en.wikipedia.org/wiki/Rotation_matrix
def getRotationMatrixManual(rotation_angles):
	
    rotation_angles = [np.deg2rad(x) for x in rotation_angles]
    
    phi         = rotation_angles[0] # around x
    gamma       = rotation_angles[1] # around y
    theta       = rotation_angles[2] # around z
    
    # X rotation
    Rphi        = np.eye(4,4)
    sp          = np.sin(phi)
    cp          = np.cos(phi)
    Rphi[1,1]   = cp
    Rphi[2,2]   = Rphi[1,1]
    Rphi[1,2]   = -sp
    Rphi[2,1]   = sp
    
    # Y rotation
    Rgamma        = np.eye(4,4)
    sg            = np.sin(gamma)
    cg            = np.cos(gamma)
    Rgamma[0,0]   = cg
    Rgamma[2,2]   = Rgamma[0,0]
    Rgamma[0,2]   = sg
    Rgamma[2,0]   = -sg
    
    # Z rotation (in-image-plane)
    Rtheta      = np.eye(4,4)
    st          = np.sin(theta)
    ct          = np.cos(theta)
    Rtheta[0,0] = ct
    Rtheta[1,1] = Rtheta[0,0]
    Rtheta[0,1] = -st
    Rtheta[1,0] = st
    
    R           = reduce(lambda x,y : np.matmul(x,y), [Rphi, Rgamma, Rtheta]) 
    
    return R

def getPoints_for_PerspectiveTranformEstimation(ptsIn, ptsOut, W, H, sidelength):
    
    ptsIn2D      =  ptsIn[0,:]
    ptsOut2D     =  ptsOut[0,:]
    ptsOut2Dlist =  []
    ptsIn2Dlist  =  []
    
    for i in range(0,4):
        ptsOut2Dlist.append([ptsOut2D[i,0], ptsOut2D[i,1]])
        ptsIn2Dlist.append([ptsIn2D[i,0], ptsIn2D[i,1]])
    
    pin  =  np.array(ptsIn2Dlist)   +  [W/2.,H/2.]
    pout = (np.array(ptsOut2Dlist)  +  [1.,1.]) * (0.5*sidelength)
    pin  = pin.astype(np.float32)
    pout = pout.astype(np.float32)
    
    return pin, pout


def warpMatrix(W, H, theta, phi, gamma, scale, fV):
    
    # M is to be estimated
    M          = np.eye(4, 4)
    
    fVhalf     = np.deg2rad(fV/2.)
    d          = np.sqrt(W*W+H*H)
    sideLength = scale*d/np.cos(fVhalf)
    h          = d/(2.0*np.sin(fVhalf))
    n          = h-(d/2.0)
    f          = h+(d/2.0)
    
    # Translation along Z-axis by -h
    T       = np.eye(4,4)
    T[2,3]  = -h
    
    # Rotation matrices around x,y,z
    R = getRotationMatrixManual([phi, gamma, theta])
    
    
    # Projection Matrix 
    P       = np.eye(4,4)
    P[0,0]  = 1.0/np.tan(fVhalf)
    P[1,1]  = P[0,0]
    P[2,2]  = -(f+n)/(f-n)
    P[2,3]  = -(2.0*f*n)/(f-n)
    P[3,2]  = -1.0
    
    # pythonic matrix multiplication
    F       = reduce(lambda x,y : np.matmul(x,y), [P, T, R]) 
    
    # shape should be 1,4,3 for ptsIn and ptsOut since perspectiveTransform() expects data in this way. 
    # In C++, this can be achieved by Mat ptsIn(1,4,CV_64FC3);
    ptsIn = np.array([[
                 [-W/2., H/2., 0.],[ W/2., H/2., 0.],[ W/2.,-H/2., 0.],[-W/2.,-H/2., 0.]
                 ]])
    ptsOut  = np.array(np.zeros((ptsIn.shape), dtype=ptsIn.dtype))
    ptsOut  = cv2.perspectiveTransform(ptsIn, F)
    
    ptsInPt2f, ptsOutPt2f = getPoints_for_PerspectiveTranformEstimation(ptsIn, ptsOut, W, H, sideLength)
    
    # check float32 otherwise OpenCV throws an error
    assert(ptsInPt2f.dtype  == np.float32)
    assert(ptsOutPt2f.dtype == np.float32)
    M33 = cv2.getPerspectiveTransform(ptsInPt2f,ptsOutPt2f)

    return M33, sideLength

def get_flip_perspective_matrix(W, H, keys, frame_idx):
    perspective_flip_theta = keys.perspective_flip_theta_series[frame_idx]
    perspective_flip_phi = keys.perspective_flip_phi_series[frame_idx]
    perspective_flip_gamma = keys.perspective_flip_gamma_series[frame_idx]
    perspective_flip_fv = keys.perspective_flip_fv_series[frame_idx]
    M,sl = warpMatrix(W, H, perspective_flip_theta, perspective_flip_phi, perspective_flip_gamma, 1., perspective_flip_fv);
    post_trans_mat = np.float32([[1, 0, (W-sl)/2], [0, 1, (H-sl)/2]])
    post_trans_mat = np.vstack([post_trans_mat, [0,0,1]])
    bM = np.matmul(M, post_trans_mat)
    return bM

def flip_3d_perspective(anim_args, prev_img_cv2, keys, frame_idx):
    W, H = (prev_img_cv2.shape[1], prev_img_cv2.shape[0])
    return cv2.warpPerspective(
        prev_img_cv2,
        get_flip_perspective_matrix(W, H, keys, frame_idx),
        (W, H),
        borderMode=cv2.BORDER_WRAP if anim_args.border == 'wrap' else cv2.BORDER_REPLICATE
    )

def anim_frame_warp(prev_img_cv2, args, anim_args, keys, frame_idx, depth_model=None, depth=None, device='cuda', half_precision = False):

    if anim_args.use_depth_warping:
        if depth is None and depth_model is not None:
            depth = depth_model.predict(prev_img_cv2, anim_args, half_precision)
    else:
        depth = None

    if anim_args.animation_mode == '2D':
        prev_img = anim_frame_warp_2d(prev_img_cv2, args, anim_args, keys, frame_idx)
    else: # '3D'
        prev_img = anim_frame_warp_3d(device, prev_img_cv2, depth, anim_args, keys, frame_idx)
                
    return prev_img, depth

def anim_frame_warp_2d(prev_img_cv2, args, anim_args, keys, frame_idx):
    angle = keys.angle_series[frame_idx]
    zoom = keys.zoom_series[frame_idx]
    translation_x = keys.translation_x_series[frame_idx]
    translation_y = keys.translation_y_series[frame_idx]

    center = (args.W // 2, args.H // 2)
    trans_mat = np.float32([[1, 0, translation_x], [0, 1, translation_y]])
    rot_mat = cv2.getRotationMatrix2D(center, angle, zoom)
    trans_mat = np.vstack([trans_mat, [0,0,1]])
    rot_mat = np.vstack([rot_mat, [0,0,1]])
    if anim_args.enable_perspective_flip:
        bM = get_flip_perspective_matrix(args.W, args.H, keys, frame_idx)
        rot_mat = np.matmul(bM, rot_mat, trans_mat)
    else:
        rot_mat = np.matmul(rot_mat, trans_mat)
    return cv2.warpPerspective(
        prev_img_cv2,
        rot_mat,
        (prev_img_cv2.shape[1], prev_img_cv2.shape[0]),
        borderMode=cv2.BORDER_WRAP if anim_args.border == 'wrap' else cv2.BORDER_REPLICATE
    )

def anim_frame_warp_3d(device, prev_img_cv2, depth, anim_args, keys, frame_idx):
    TRANSLATION_SCALE = 1.0/200.0 # matches Disco
    translate_xyz = [
        -keys.translation_x_series[frame_idx] * TRANSLATION_SCALE, 
        keys.translation_y_series[frame_idx] * TRANSLATION_SCALE, 
        -keys.translation_z_series[frame_idx] * TRANSLATION_SCALE
    ]
    rotate_xyz = [
        math.radians(keys.rotation_3d_x_series[frame_idx]), 
        math.radians(keys.rotation_3d_y_series[frame_idx]), 
        math.radians(keys.rotation_3d_z_series[frame_idx])
    ]
    if anim_args.enable_perspective_flip:
        prev_img_cv2 = flip_3d_perspective(anim_args, prev_img_cv2, keys, frame_idx)
    rot_mat = p3d.euler_angles_to_matrix(torch.tensor(rotate_xyz, device=device), "XYZ").unsqueeze(0)
    result = transform_image_3d(device if not device.type.startswith('mps') else torch.device('cpu'), prev_img_cv2, depth, rot_mat, translate_xyz, anim_args, keys, frame_idx)
    torch.cuda.empty_cache()
    return result

def transform_image_3d(device, prev_img_cv2, depth_tensor, rot_mat, translate, anim_args, keys, frame_idx):
    # adapted and optimized version of transform_image_3d from Disco Diffusion https://github.com/alembics/disco-diffusion 
    w, h = prev_img_cv2.shape[1], prev_img_cv2.shape[0]

    aspect_ratio = float(w)/float(h)
    near = keys.near_series[frame_idx]
    far = keys.far_series[frame_idx]
    fov_deg = keys.fov_series[frame_idx]
    persp_cam_old = p3d.FoVPerspectiveCameras(near, far, aspect_ratio, fov=fov_deg, degrees=True, device=device)
    persp_cam_new = p3d.FoVPerspectiveCameras(near, far, aspect_ratio, fov=fov_deg, degrees=True, R=rot_mat, T=torch.tensor([translate]), device=device)

    # range of [-1,1] is important to torch grid_sample's padding handling
    y,x = torch.meshgrid(torch.linspace(-1.,1.,h,dtype=torch.float32,device=device),torch.linspace(-1.,1.,w,dtype=torch.float32,device=device))
    if depth_tensor is None:
        z = torch.ones_like(x)
    else:
        z = torch.as_tensor(depth_tensor, dtype=torch.float32, device=device)
    xyz_old_world = torch.stack((x.flatten(), y.flatten(), z.flatten()), dim=1)

    xyz_old_cam_xy = persp_cam_old.get_full_projection_transform().transform_points(xyz_old_world)[:,0:2]
    xyz_new_cam_xy = persp_cam_new.get_full_projection_transform().transform_points(xyz_old_world)[:,0:2]

    offset_xy = xyz_new_cam_xy - xyz_old_cam_xy
    # affine_grid theta param expects a batch of 2D mats. Each is 2x3 to do rotation+translation.
    identity_2d_batch = torch.tensor([[1.,0.,0.],[0.,1.,0.]], device=device).unsqueeze(0)
    # coords_2d will have shape (N,H,W,2).. which is also what grid_sample needs.
    coords_2d = torch.nn.functional.affine_grid(identity_2d_batch, [1,1,h,w], align_corners=False)
    offset_coords_2d = coords_2d - torch.reshape(offset_xy, (h,w,2)).unsqueeze(0)

    image_tensor = rearrange(torch.from_numpy(prev_img_cv2.astype(np.float32)), 'h w c -> c h w').to(device)
    new_image = torch.nn.functional.grid_sample(
        image_tensor.add(1/512 - 0.0001).unsqueeze(0), 
        offset_coords_2d, 
        mode=anim_args.sampling_mode, 
        padding_mode=anim_args.padding_mode, 
        align_corners=False
    )

    # convert back to cv2 style numpy array
    result = rearrange(
        new_image.squeeze().clamp(0,255), 
        'c h w -> h w c'
    ).cpu().numpy().astype(prev_img_cv2.dtype)
    return result