File size: 13,400 Bytes
55cc64a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import inspect
from pydantic import BaseModel, Field, create_model
from typing import Any, Optional
from typing_extensions import Literal
from inflection import underscore
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
from modules.shared import sd_upscalers, opts, parser
from typing import Dict, List

API_NOT_ALLOWED = [
    "self",
    "kwargs",
    "sd_model",
    "outpath_samples",
    "outpath_grids",
    "sampler_index",
    "do_not_save_samples",
    "do_not_save_grid",
    "extra_generation_params",
    "overlay_images",
    "do_not_reload_embeddings",
    "seed_enable_extras",
    "prompt_for_display",
    "sampler_noise_scheduler_override",
    "ddim_discretize"
]

class ModelDef(BaseModel):
    """Assistance Class for Pydantic Dynamic Model Generation"""

    field: str
    field_alias: str
    field_type: Any
    field_value: Any
    field_exclude: bool = False


class PydanticModelGenerator:
    """
    Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
    source_data is a snapshot of the default values produced by the class
    params are the names of the actual keys required by __init__
    """

    def __init__(
        self,
        model_name: str = None,
        class_instance = None,
        additional_fields = None,
    ):
        def field_type_generator(k, v):
            # field_type = str if not overrides.get(k) else overrides[k]["type"]
            # print(k, v.annotation, v.default)
            field_type = v.annotation

            return Optional[field_type]

        def merge_class_params(class_):
            all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
            parameters = {}
            for classes in all_classes:
                parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
            return parameters


        self._model_name = model_name
        self._class_data = merge_class_params(class_instance)

        self._model_def = [
            ModelDef(
                field=underscore(k),
                field_alias=k,
                field_type=field_type_generator(k, v),
                field_value=v.default
            )
            for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
        ]

        for fields in additional_fields:
            self._model_def.append(ModelDef(
                field=underscore(fields["key"]),
                field_alias=fields["key"],
                field_type=fields["type"],
                field_value=fields["default"],
                field_exclude=fields["exclude"] if "exclude" in fields else False))

    def generate_model(self):
        """
        Creates a pydantic BaseModel
        from the json and overrides provided at initialization
        """
        fields = {
            d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def
        }
        DynamicModel = create_model(self._model_name, **fields)
        DynamicModel.__config__.allow_population_by_field_name = True
        DynamicModel.__config__.allow_mutation = True
        return DynamicModel

StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
    "StableDiffusionProcessingTxt2Img",
    StableDiffusionProcessingTxt2Img,
    [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
).generate_model()

StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
    "StableDiffusionProcessingImg2Img",
    StableDiffusionProcessingImg2Img,
    [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
).generate_model()

class TextToImageResponse(BaseModel):
    images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
    parameters: dict
    info: str

class ImageToImageResponse(BaseModel):
    images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
    parameters: dict
    info: str

class ExtrasBaseRequest(BaseModel):
    resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
    show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
    gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
    codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
    codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
    upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.")
    upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
    upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
    upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
    upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
    upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
    extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
    upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?")

class ExtraBaseResponse(BaseModel):
    html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")

class ExtrasSingleImageRequest(ExtrasBaseRequest):
    image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")

class ExtrasSingleImageResponse(ExtraBaseResponse):
    image: str = Field(default=None, title="Image", description="The generated image in base64 format.")

class FileData(BaseModel):
    data: str = Field(title="File data", description="Base64 representation of the file")
    name: str = Field(title="File name")

class ExtrasBatchImagesRequest(ExtrasBaseRequest):
    imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")

class ExtrasBatchImagesResponse(ExtraBaseResponse):
    images: List[str] = Field(title="Images", description="The generated images in base64 format.")

class PNGInfoRequest(BaseModel):
    image: str = Field(title="Image", description="The base64 encoded PNG image")

class PNGInfoResponse(BaseModel):
    info: str = Field(title="Image info", description="A string with the parameters used to generate the image")
    items: dict = Field(title="Items", description="An object containing all the info the image had")

class ProgressRequest(BaseModel):
    skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")

class ProgressResponse(BaseModel):
    progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
    eta_relative: float = Field(title="ETA in secs")
    state: dict = Field(title="State", description="The current state snapshot")
    current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
    textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.")

class InterrogateRequest(BaseModel):
    image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
    model: str = Field(default="clip", title="Model", description="The interrogate model used.")

class InterrogateResponse(BaseModel):
    caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")

class TrainResponse(BaseModel):
    info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")

class CreateResponse(BaseModel):
    info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")

class PreprocessResponse(BaseModel):
    info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")

fields = {}
for key, metadata in opts.data_labels.items():
    value = opts.data.get(key)
    optType = opts.typemap.get(type(metadata.default), type(value))

    if (metadata is not None):
        fields.update({key: (Optional[optType], Field(
            default=metadata.default ,description=metadata.label))})
    else:
        fields.update({key: (Optional[optType], Field())})

OptionsModel = create_model("Options", **fields)

flags = {}
_options = vars(parser)['_option_string_actions']
for key in _options:
    if(_options[key].dest != 'help'):
        flag = _options[key]
        _type = str
        if _options[key].default is not None: _type = type(_options[key].default)
        flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})

FlagsModel = create_model("Flags", **flags)

class SamplerItem(BaseModel):
    name: str = Field(title="Name")
    aliases: List[str] = Field(title="Aliases")
    options: Dict[str, str] = Field(title="Options")

class UpscalerItem(BaseModel):
    name: str = Field(title="Name")
    model_name: Optional[str] = Field(title="Model Name")
    model_path: Optional[str] = Field(title="Path")
    model_url: Optional[str] = Field(title="URL")
    scale: Optional[float] = Field(title="Scale")

class SDModelItem(BaseModel):
    title: str = Field(title="Title")
    model_name: str = Field(title="Model Name")
    hash: Optional[str] = Field(title="Short hash")
    sha256: Optional[str] = Field(title="sha256 hash")
    filename: str = Field(title="Filename")
    config: Optional[str] = Field(title="Config file")

class HypernetworkItem(BaseModel):
    name: str = Field(title="Name")
    path: Optional[str] = Field(title="Path")

class FaceRestorerItem(BaseModel):
    name: str = Field(title="Name")
    cmd_dir: Optional[str] = Field(title="Path")

class RealesrganItem(BaseModel):
    name: str = Field(title="Name")
    path: Optional[str] = Field(title="Path")
    scale: Optional[int] = Field(title="Scale")

class PromptStyleItem(BaseModel):
    name: str = Field(title="Name")
    prompt: Optional[str] = Field(title="Prompt")
    negative_prompt: Optional[str] = Field(title="Negative Prompt")

class ArtistItem(BaseModel):
    name: str = Field(title="Name")
    score: float = Field(title="Score")
    category: str = Field(title="Category")

class EmbeddingItem(BaseModel):
    step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
    sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
    sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
    shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
    vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")

class EmbeddingsResponse(BaseModel):
    loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
    skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")

class MemoryResponse(BaseModel):
    ram: dict = Field(title="RAM", description="System memory stats")
    cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")