File size: 6,975 Bytes
80c91d0 0ee99b8 80c91d0 0ee99b8 80c91d0 0ee99b8 80c91d0 0ee99b8 80c91d0 0ee99b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import subprocess
import sys
import os
import threading
import time
import uuid
import glob
import shutil
from pathlib import Path
default_command = "bigcodebench.evaluate"
is_running = False
def generate_command(
jsonl_file, split, subset, parallel,
min_time_limit, max_as_limit, max_data_limit, max_stack_limit,
check_gt_only, no_gt
):
command = [default_command]
if jsonl_file is not None:
# Copy the uploaded file to the current directory
local_filename = os.path.basename(jsonl_file.name)
shutil.copy(jsonl_file.name, local_filename)
command.extend(["--samples", local_filename])
command.extend(["--split", split, "--subset", subset])
if parallel is not None and parallel != 0:
command.extend(["--parallel", str(int(parallel))])
command.extend([
"--min-time-limit", str(min_time_limit),
"--max-as-limit", str(int(max_as_limit)),
"--max-data-limit", str(int(max_data_limit)),
"--max-stack-limit", str(int(max_stack_limit))
])
if check_gt_only:
command.append("--check-gt-only")
if no_gt:
command.append("--no-gt")
return " ".join(command)
def cleanup_previous_files(jsonl_file):
if jsonl_file is not None:
file_list = ['Dockerfile', 'app.py', 'README.md', os.path.basename(jsonl_file.name), "__pycache__"]
else:
file_list = ['Dockerfile', 'app.py', 'README.md', "__pycache__"]
for file in glob.glob("*"):
try:
if file not in file_list:
os.remove(file)
except Exception as e:
print(f"Error during cleanup of {file}: {e}")
def find_result_file():
json_files = glob.glob("*.json")
if json_files:
return max(json_files, key=os.path.getmtime)
return None
def run_bigcodebench(command):
global is_running
if is_running:
yield "A command is already running. Please wait for it to finish.\n"
return
is_running = True
try:
yield f"Executing command: {command}\n"
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
def kill_process():
if process.poll() is None: # If the process is still running
process.terminate()
is_running = False
yield "Process terminated after 12 minutes timeout.\n"
# Start a timer to kill the process after 12 minutes
timer = threading.Timer(720, kill_process)
timer.start()
for line in process.stdout:
yield line
# process.wait()
timer.cancel()
if process.returncode != 0:
yield f"Error: Command exited with status {process.returncode}\n"
yield "Evaluation completed.\n"
result_file = find_result_file()
if result_file:
yield f"Result file found: {result_file}\n"
else:
yield "No result file found.\n"
finally:
is_running = False
def stream_logs(command, jsonl_file=None):
global is_running
if is_running:
yield "A command is already running. Please wait for it to finish.\n"
return
cleanup_previous_files(jsonl_file)
yield "Cleaned up previous files.\n"
log_content = []
for log_line in run_bigcodebench(command):
log_content.append(log_line)
yield "".join(log_content)
# with gr.Blocks() as demo:
# gr.Markdown("# BigCodeBench Evaluator")
# with gr.Row():
# jsonl_file = gr.File(label="Upload JSONL file", file_types=[".jsonl"])
# split = gr.Dropdown(choices=["complete", "instruct"], label="Split", value="complete")
# subset = gr.Dropdown(choices=["hard", "full"], label="Subset", value="hard")
# with gr.Row():
# parallel = gr.Number(label="Parallel (optional)", precision=0)
# min_time_limit = gr.Number(label="Min Time Limit", value=1, precision=1)
# max_as_limit = gr.Number(label="Max AS Limit", value=25*1024, precision=0)
# with gr.Row():
# max_data_limit = gr.Number(label="Max Data Limit", value=25*1024, precision=0)
# max_stack_limit = gr.Number(label="Max Stack Limit", value=10, precision=0)
# check_gt_only = gr.Checkbox(label="Check GT Only")
# no_gt = gr.Checkbox(label="No GT")
# command_output = gr.Textbox(label="Command", value=default_command, interactive=False)
# with gr.Row():
# submit_btn = gr.Button("Run Evaluation")
# download_btn = gr.DownloadButton(label="Download Result")
# log_output = gr.Textbox(label="Execution Logs", lines=20)
# input_components = [
# jsonl_file, split, subset, parallel,
# min_time_limit, max_as_limit, max_data_limit, max_stack_limit,
# check_gt_only, no_gt
# ]
# for component in input_components:
# component.change(generate_command, inputs=input_components, outputs=command_output)
# def start_evaluation(command, jsonl_file, subset, split):
# extra = subset + "_" if subset != "full" else ""
# if jsonl_file is not None:
# result_path = os.path.basename(jsonl_file.name).replace(".jsonl", f"_{extra}eval_results.json")
# else:
# result_path = None
# for log in stream_logs(command, jsonl_file):
# if jsonl_file is not None:
# yield log, gr.update(value=result_path, label=result_path), gr.update()
# else:
# yield log, gr.update(), gr.update()
# result_file = find_result_file()
# if result_file:
# return gr.update(label="Evaluation completed. Result file found."), gr.update(value=result_file)
# # gr.Button(visible=False)#,
# # gr.DownloadButton(label="Download Result", value=result_file, visible=True))
# else:
# return gr.update(label="Evaluation completed. No result file found."), gr.update(value=result_path)
# # gr.Button("Run Evaluation", visible=True),
# # gr.DownloadButton(visible=False))
# submit_btn.click(start_evaluation,
# inputs=[command_output, jsonl_file, subset, split],
# outputs=[log_output, download_btn])
# REPO_ID = "bigcode/bigcodebench-evaluator"
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
# API = HfApi(token=HF_TOKEN)
# def restart_space():
# API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
# demo.queue(max_size=300).launch(share=True, server_name="0.0.0.0", server_port=7860)
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h as backup in case automatic updates are not working
# scheduler.start() |