Spaces:
Runtime error
Runtime error
File size: 4,996 Bytes
9b5b26a c19d193 6aae614 8fe992b 9b5b26a 5df72d6 9b5b26a 3d1237b 9b5b26a 656049a c42852b 656049a 7dc582a 656049a 8c01ffb 6aae614 ae7a494 c42852b ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b d2f6a24 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
@tool
def analyze_stock(ticker: str) -> dict: # type: ignore[type-arg]
"""
A tool that analyze stock data.
Args:
ticker: A string representing stock ticker(e.g., 'AMD')
"""
import os
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import yfinance as yf
from pytz import timezone # type: ignore
stock = yf.Ticker(ticker)
# Get historical data (1 year of data to ensure we have enough for 200-day MA)
end_date = datetime.now(timezone("UTC"))
start_date = end_date - timedelta(days=365)
hist = stock.history(start=start_date, end=end_date)
# Ensure we have data
if hist.empty:
return {"error": "No historical data available for the specified ticker."}
# Compute basic statistics and additional metrics
current_price = stock.info.get("currentPrice", hist["Close"].iloc[-1])
year_high = stock.info.get("fiftyTwoWeekHigh", hist["High"].max())
year_low = stock.info.get("fiftyTwoWeekLow", hist["Low"].min())
# Calculate 50-day and 200-day moving averages
ma_50 = hist["Close"].rolling(window=50).mean().iloc[-1]
ma_200 = hist["Close"].rolling(window=200).mean().iloc[-1]
# Calculate YTD price change and percent change
ytd_start = datetime(end_date.year, 1, 1, tzinfo=timezone("UTC"))
ytd_data = hist.loc[ytd_start:] # type: ignore[misc]
if not ytd_data.empty:
price_change = ytd_data["Close"].iloc[-1] - ytd_data["Close"].iloc[0]
percent_change = (price_change / ytd_data["Close"].iloc[0]) * 100
else:
price_change = percent_change = np.nan
# Determine trend
if pd.notna(ma_50) and pd.notna(ma_200):
if ma_50 > ma_200:
trend = "Upward"
elif ma_50 < ma_200:
trend = "Downward"
else:
trend = "Neutral"
else:
trend = "Insufficient data for trend analysis"
# Calculate volatility (standard deviation of daily returns)
daily_returns = hist["Close"].pct_change().dropna()
volatility = daily_returns.std() * np.sqrt(252) # Annualized volatility
# Create result dictionary
result = {
"ticker": ticker,
"current_price": current_price,
"52_week_high": year_high,
"52_week_low": year_low,
"50_day_ma": ma_50,
"200_day_ma": ma_200,
"ytd_price_change": price_change,
"ytd_percent_change": percent_change,
"trend": trend,
"volatility": volatility,
}
# Convert numpy types to Python native types for better JSON serialization
for key, value in result.items():
if isinstance(value, np.generic):
result[key] = value.item()
return result
final_answer = FinalAnswerTool()
print(analyze_stock('AMD'))
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |