File size: 4,996 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
3d1237b
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
656049a
c42852b
656049a
 
 
7dc582a
656049a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
c42852b
 
ae7a494
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
d2f6a24
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"
@tool
def analyze_stock(ticker: str) -> dict:  # type: ignore[type-arg]
    """
    A tool that analyze stock data.
    Args:
        ticker: A string representing stock ticker(e.g., 'AMD')
    """
    import os
    from datetime import datetime, timedelta

    import numpy as np
    import pandas as pd
    import yfinance as yf
    from pytz import timezone  # type: ignore

    stock = yf.Ticker(ticker)

    # Get historical data (1 year of data to ensure we have enough for 200-day MA)
    end_date = datetime.now(timezone("UTC"))
    start_date = end_date - timedelta(days=365)
    hist = stock.history(start=start_date, end=end_date)

    # Ensure we have data
    if hist.empty:
        return {"error": "No historical data available for the specified ticker."}

    # Compute basic statistics and additional metrics
    current_price = stock.info.get("currentPrice", hist["Close"].iloc[-1])
    year_high = stock.info.get("fiftyTwoWeekHigh", hist["High"].max())
    year_low = stock.info.get("fiftyTwoWeekLow", hist["Low"].min())

    # Calculate 50-day and 200-day moving averages
    ma_50 = hist["Close"].rolling(window=50).mean().iloc[-1]
    ma_200 = hist["Close"].rolling(window=200).mean().iloc[-1]

    # Calculate YTD price change and percent change
    ytd_start = datetime(end_date.year, 1, 1, tzinfo=timezone("UTC"))
    ytd_data = hist.loc[ytd_start:]  # type: ignore[misc]
    if not ytd_data.empty:
        price_change = ytd_data["Close"].iloc[-1] - ytd_data["Close"].iloc[0]
        percent_change = (price_change / ytd_data["Close"].iloc[0]) * 100
    else:
        price_change = percent_change = np.nan

    # Determine trend
    if pd.notna(ma_50) and pd.notna(ma_200):
        if ma_50 > ma_200:
            trend = "Upward"
        elif ma_50 < ma_200:
            trend = "Downward"
        else:
            trend = "Neutral"
    else:
        trend = "Insufficient data for trend analysis"

    # Calculate volatility (standard deviation of daily returns)
    daily_returns = hist["Close"].pct_change().dropna()
    volatility = daily_returns.std() * np.sqrt(252)  # Annualized volatility

    # Create result dictionary
    result = {
        "ticker": ticker,
        "current_price": current_price,
        "52_week_high": year_high,
        "52_week_low": year_low,
        "50_day_ma": ma_50,
        "200_day_ma": ma_200,
        "ytd_price_change": price_change,
        "ytd_percent_change": percent_change,
        "trend": trend,
        "volatility": volatility,
    }

    # Convert numpy types to Python native types for better JSON serialization
    for key, value in result.items():
        if isinstance(value, np.generic):
            result[key] = value.item()

    return result


final_answer = FinalAnswerTool()

print(analyze_stock('AMD'))

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()