File size: 4,938 Bytes
39ce191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af7ffc
 
 
39ce191
 
1af7ffc
39ce191
 
1af7ffc
39ce191
 
1af7ffc
 
 
 
39ce191
 
1af7ffc
 
 
 
 
 
 
 
 
 
39ce191
 
 
 
1af7ffc
39ce191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
MCP (Model Context Protocol) service for web search fallback.
"""
import asyncio
import structlog
from typing import Dict, Any, Optional
import json

logger = structlog.get_logger()

class MCPService:
    """Service for MCP web search integration."""
    
    def __init__(self):
        """Initialize MCP service."""
        self.mcp_server_path = "pranavms13/web-search-mcp"
        self.initialized = False
        logger.info("MCP service initialized")
    
    async def search_web(self, question: str) -> Dict[str, Any]:
        """
        Search the web for math-related information using MCP.
        
        Args:
            question: The math question to search for
            
        Returns:
            Dictionary containing web search results
        """
        try:
            logger.info("Starting web search via MCP", question_length=len(question))
            
            # TODO: Implement actual MCP integration
            # For now, return a placeholder response
            
            # Simulate web search delay
            await asyncio.sleep(0.5)
            
            # Mock response based on question type with realistic confidence scoring
            confidence_score = 0.6  # Default confidence
            
            if any(keyword in question.lower() for keyword in ['derivative', 'integral', 'calculus']):
                answer = f"Based on web search: This appears to be a calculus problem. {question} involves applying standard calculus techniques. Consider using the fundamental theorem of calculus or integration by parts."
                confidence_score = 0.75  # Higher confidence for calculus
            elif any(keyword in question.lower() for keyword in ['algebra', 'equation', 'solve']):
                answer = f"Based on web search: This is an algebraic problem. {question} can be solved using algebraic manipulation and equation solving techniques."
                confidence_score = 0.7  # Good confidence for algebra
            elif any(keyword in question.lower() for keyword in ['geometry', 'triangle', 'circle']):
                answer = f"Based on web search: This is a geometry problem. {question} involves geometric principles and may require knowledge of shapes, areas, or angles."
                confidence_score = 0.65  # Moderate confidence for geometry
            elif any(keyword in question.lower() for keyword in ['statistics', 'probability', 'mean', 'standard deviation']):
                answer = f"Based on web search: This is a statistics/probability problem. {question} requires understanding of statistical concepts and may involve data analysis."
                confidence_score = 0.72  # Good confidence for stats
            else:
                answer = f"Based on web search: {question} is a mathematical problem that may require breaking down into smaller steps and applying relevant mathematical concepts."
                confidence_score = 0.55  # Lower confidence for unknown types
            
            # Adjust confidence based on question length and complexity
            if len(question) > 100:
                confidence_score += 0.05  # Slightly higher for detailed questions
            if '=' in question and any(op in question for op in ['+', '-', '*', '/', '^']):
                confidence_score += 0.1   # Higher for equations with operators
            
            # Cap confidence to ensure it's below KB threshold for testing fallback
            confidence_score = min(confidence_score, 0.79)  # Always below 0.8 threshold
            
            result = {
                "answer": answer,
                "source": "web_search",
                "confidence": confidence_score,
                "search_query": question,
                "results_count": 1
            }
            
            logger.info("Web search completed via MCP",
                       answer_length=len(answer),
                       confidence=result["confidence"])
            
            return result
            
        except Exception as e:
            logger.error("Web search via MCP failed", error=str(e))
            raise Exception(f"MCP web search failed: {str(e)}")
    
    async def initialize_mcp_connection(self):
        """Initialize connection to MCP server."""
        try:
            # TODO: Implement actual MCP server connection
            # This would involve:
            # 1. Spawning the MCP server process
            # 2. Establishing JSON-RPC communication
            # 3. Calling available tools like web_search
            
            self.initialized = True
            logger.info("MCP connection initialized successfully")
            
        except Exception as e:
            logger.error("Failed to initialize MCP connection", error=str(e))
            raise
    
    def is_available(self) -> bool:
        """Check if MCP service is available."""
        return self.initialized