Spaces:
Runtime error
Runtime error
File size: 9,687 Bytes
e215925 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
from __future__ import division, absolute_import
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
__all__ = ['xception']
pretrained_settings = {
'xception': {
'imagenet': {
'url':
'http://data.lip6.fr/cadene/pretrainedmodels/xception-43020ad28.pth',
'input_space': 'RGB',
'input_size': [3, 299, 299],
'input_range': [0, 1],
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'num_classes': 1000,
'scale':
0.8975 # The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
}
}
}
class SeparableConv2d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=False
):
super(SeparableConv2d, self).__init__()
self.conv1 = nn.Conv2d(
in_channels,
in_channels,
kernel_size,
stride,
padding,
dilation,
groups=in_channels,
bias=bias
)
self.pointwise = nn.Conv2d(
in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias
)
def forward(self, x):
x = self.conv1(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(
self,
in_filters,
out_filters,
reps,
strides=1,
start_with_relu=True,
grow_first=True
):
super(Block, self).__init__()
if out_filters != in_filters or strides != 1:
self.skip = nn.Conv2d(
in_filters, out_filters, 1, stride=strides, bias=False
)
self.skipbn = nn.BatchNorm2d(out_filters)
else:
self.skip = None
self.relu = nn.ReLU(inplace=True)
rep = []
filters = in_filters
if grow_first:
rep.append(self.relu)
rep.append(
SeparableConv2d(
in_filters,
out_filters,
3,
stride=1,
padding=1,
bias=False
)
)
rep.append(nn.BatchNorm2d(out_filters))
filters = out_filters
for i in range(reps - 1):
rep.append(self.relu)
rep.append(
SeparableConv2d(
filters, filters, 3, stride=1, padding=1, bias=False
)
)
rep.append(nn.BatchNorm2d(filters))
if not grow_first:
rep.append(self.relu)
rep.append(
SeparableConv2d(
in_filters,
out_filters,
3,
stride=1,
padding=1,
bias=False
)
)
rep.append(nn.BatchNorm2d(out_filters))
if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)
if strides != 1:
rep.append(nn.MaxPool2d(3, strides, 1))
self.rep = nn.Sequential(*rep)
def forward(self, inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp
x += skip
return x
class Xception(nn.Module):
"""Xception.
Reference:
Chollet. Xception: Deep Learning with Depthwise
Separable Convolutions. CVPR 2017.
Public keys:
- ``xception``: Xception.
"""
def __init__(
self, num_classes, loss, fc_dims=None, dropout_p=None, **kwargs
):
super(Xception, self).__init__()
self.loss = loss
self.conv1 = nn.Conv2d(3, 32, 3, 2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.block1 = Block(
64, 128, 2, 2, start_with_relu=False, grow_first=True
)
self.block2 = Block(
128, 256, 2, 2, start_with_relu=True, grow_first=True
)
self.block3 = Block(
256, 728, 2, 2, start_with_relu=True, grow_first=True
)
self.block4 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True
)
self.block5 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True
)
self.block6 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True
)
self.block7 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True
)
self.block8 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True
)
self.block9 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True
)
self.block10 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True
)
self.block11 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True
)
self.block12 = Block(
728, 1024, 2, 2, start_with_relu=True, grow_first=False
)
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
self.bn3 = nn.BatchNorm2d(1536)
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(2048)
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.feature_dim = 2048
self.fc = self._construct_fc_layer(fc_dims, 2048, dropout_p)
self.classifier = nn.Linear(self.feature_dim, num_classes)
self._init_params()
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
"""Constructs fully connected layer.
Args:
fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed
input_dim (int): input dimension
dropout_p (float): dropout probability, if None, dropout is unused
"""
if fc_dims is None:
self.feature_dim = input_dim
return None
assert isinstance(
fc_dims, (list, tuple)
), 'fc_dims must be either list or tuple, but got {}'.format(
type(fc_dims)
)
layers = []
for dim in fc_dims:
layers.append(nn.Linear(input_dim, dim))
layers.append(nn.BatchNorm1d(dim))
layers.append(nn.ReLU(inplace=True))
if dropout_p is not None:
layers.append(nn.Dropout(p=dropout_p))
input_dim = dim
self.feature_dim = fc_dims[-1]
return nn.Sequential(*layers)
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu'
)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def featuremaps(self, input):
x = self.conv1(input)
x = self.bn1(x)
x = F.relu(x, inplace=True)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x, inplace=True)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.conv3(x)
x = self.bn3(x)
x = F.relu(x, inplace=True)
x = self.conv4(x)
x = self.bn4(x)
x = F.relu(x, inplace=True)
return x
def forward(self, x):
f = self.featuremaps(x)
v = self.global_avgpool(f)
v = v.view(v.size(0), -1)
if self.fc is not None:
v = self.fc(v)
if not self.training:
return v
y = self.classifier(v)
if self.loss == 'softmax':
return y
elif self.loss == 'triplet':
return y, v
else:
raise KeyError('Unsupported loss: {}'.format(self.loss))
def init_pretrained_weights(model, model_url):
"""Initialize models with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
pretrain_dict = model_zoo.load_url(model_url)
model_dict = model.state_dict()
pretrain_dict = {
k: v
for k, v in pretrain_dict.items()
if k in model_dict and model_dict[k].size() == v.size()
}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
def xception(num_classes, loss='softmax', pretrained=True, **kwargs):
model = Xception(num_classes, loss, fc_dims=None, dropout_p=None, **kwargs)
if pretrained:
model_url = pretrained_settings['xception']['imagenet']['url']
init_pretrained_weights(model, model_url)
return model
|