File size: 8,261 Bytes
e215925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
Credit to https://github.com/XingangPan/IBN-Net.
"""
from __future__ import division, absolute_import
import math
import torch.nn as nn
import torch.utils.model_zoo as model_zoo

__all__ = ['resnet50_ibn_b']

model_urls = {
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False
    )


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, IN=False):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(
            planes,
            planes,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=False
        )
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(
            planes, planes * self.expansion, kernel_size=1, bias=False
        )
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.IN = None
        if IN:
            self.IN = nn.InstanceNorm2d(planes * 4, affine=True)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        if self.IN is not None:
            out = self.IN(out)
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    """Residual network + IBN layer.
    
    Reference:
        - He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
        - Pan et al. Two at Once: Enhancing Learning and Generalization
          Capacities via IBN-Net. ECCV 2018.
    """

    def __init__(
        self,
        block,
        layers,
        num_classes=1000,
        loss='softmax',
        fc_dims=None,
        dropout_p=None,
        **kwargs
    ):
        scale = 64
        self.inplanes = scale
        super(ResNet, self).__init__()
        self.loss = loss
        self.feature_dim = scale * 8 * block.expansion

        self.conv1 = nn.Conv2d(
            3, scale, kernel_size=7, stride=2, padding=3, bias=False
        )
        self.bn1 = nn.InstanceNorm2d(scale, affine=True)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(
            block, scale, layers[0], stride=1, IN=True
        )
        self.layer2 = self._make_layer(
            block, scale * 2, layers[1], stride=2, IN=True
        )
        self.layer3 = self._make_layer(block, scale * 4, layers[2], stride=2)
        self.layer4 = self._make_layer(block, scale * 8, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = self._construct_fc_layer(
            fc_dims, scale * 8 * block.expansion, dropout_p
        )
        self.classifier = nn.Linear(self.feature_dim, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.InstanceNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1, IN=False):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(
                    self.inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False
                ),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks - 1):
            layers.append(block(self.inplanes, planes))
        layers.append(block(self.inplanes, planes, IN=IN))

        return nn.Sequential(*layers)

    def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
        """Constructs fully connected layer

        Args:
            fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed
            input_dim (int): input dimension
            dropout_p (float): dropout probability, if None, dropout is unused
        """
        if fc_dims is None:
            self.feature_dim = input_dim
            return None

        assert isinstance(
            fc_dims, (list, tuple)
        ), 'fc_dims must be either list or tuple, but got {}'.format(
            type(fc_dims)
        )

        layers = []
        for dim in fc_dims:
            layers.append(nn.Linear(input_dim, dim))
            layers.append(nn.BatchNorm1d(dim))
            layers.append(nn.ReLU(inplace=True))
            if dropout_p is not None:
                layers.append(nn.Dropout(p=dropout_p))
            input_dim = dim

        self.feature_dim = fc_dims[-1]

        return nn.Sequential(*layers)

    def featuremaps(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        return x

    def forward(self, x):
        f = self.featuremaps(x)
        v = self.avgpool(f)
        v = v.view(v.size(0), -1)
        if self.fc is not None:
            v = self.fc(v)
        if not self.training:
            return v
        y = self.classifier(v)
        if self.loss == 'softmax':
            return y
        elif self.loss == 'triplet':
            return y, v
        else:
            raise KeyError("Unsupported loss: {}".format(self.loss))


def init_pretrained_weights(model, model_url):
    """Initializes model with pretrained weights.
    
    Layers that don't match with pretrained layers in name or size are kept unchanged.
    """
    pretrain_dict = model_zoo.load_url(model_url)
    model_dict = model.state_dict()
    pretrain_dict = {
        k: v
        for k, v in pretrain_dict.items()
        if k in model_dict and model_dict[k].size() == v.size()
    }
    model_dict.update(pretrain_dict)
    model.load_state_dict(model_dict)


def resnet50_ibn_b(num_classes, loss='softmax', pretrained=False, **kwargs):
    model = ResNet(
        Bottleneck, [3, 4, 6, 3], num_classes=num_classes, loss=loss, **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, model_urls['resnet50'])
    return model