Spaces:
Runtime error
Runtime error
File size: 15,154 Bytes
e215925 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
"""
Code source: https://github.com/pytorch/vision
"""
from __future__ import division, absolute_import
import torch.utils.model_zoo as model_zoo
from torch import nn
__all__ = [
'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152',
'resnext50_32x4d', 'resnext101_32x8d', 'resnet50_fc512'
]
model_urls = {
'resnet18':
'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34':
'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50':
'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101':
'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152':
'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnext50_32x4d':
'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d':
'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
}
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation
)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(
in_planes, out_planes, kernel_size=1, stride=stride, bias=False
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None
):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
'BasicBlock only supports groups=1 and base_width=64'
)
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BasicBlock"
)
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None
):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width/64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
"""Residual network.
Reference:
- He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
- Xie et al. Aggregated Residual Transformations for Deep Neural Networks. CVPR 2017.
Public keys:
- ``resnet18``: ResNet18.
- ``resnet34``: ResNet34.
- ``resnet50``: ResNet50.
- ``resnet101``: ResNet101.
- ``resnet152``: ResNet152.
- ``resnext50_32x4d``: ResNeXt50.
- ``resnext101_32x8d``: ResNeXt101.
- ``resnet50_fc512``: ResNet50 + FC.
"""
def __init__(
self,
num_classes,
loss,
block,
layers,
zero_init_residual=False,
groups=1,
width_per_group=64,
replace_stride_with_dilation=None,
norm_layer=None,
last_stride=2,
fc_dims=None,
dropout_p=None,
**kwargs
):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.loss = loss
self.feature_dim = 512 * block.expansion
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".
format(replace_stride_with_dilation)
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(
3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(
block,
128,
layers[1],
stride=2,
dilate=replace_stride_with_dilation[0]
)
self.layer3 = self._make_layer(
block,
256,
layers[2],
stride=2,
dilate=replace_stride_with_dilation[1]
)
self.layer4 = self._make_layer(
block,
512,
layers[3],
stride=last_stride,
dilate=replace_stride_with_dilation[2]
)
self.global_avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = self._construct_fc_layer(
fc_dims, 512 * block.expansion, dropout_p
)
self.classifier = nn.Linear(self.feature_dim, num_classes)
self._init_params()
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer
)
)
return nn.Sequential(*layers)
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
"""Constructs fully connected layer
Args:
fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed
input_dim (int): input dimension
dropout_p (float): dropout probability, if None, dropout is unused
"""
if fc_dims is None:
self.feature_dim = input_dim
return None
assert isinstance(
fc_dims, (list, tuple)
), 'fc_dims must be either list or tuple, but got {}'.format(
type(fc_dims)
)
layers = []
for dim in fc_dims:
layers.append(nn.Linear(input_dim, dim))
layers.append(nn.BatchNorm1d(dim))
layers.append(nn.ReLU(inplace=True))
if dropout_p is not None:
layers.append(nn.Dropout(p=dropout_p))
input_dim = dim
self.feature_dim = fc_dims[-1]
return nn.Sequential(*layers)
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu'
)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def featuremaps(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x):
f = self.featuremaps(x)
v = self.global_avgpool(f)
v = v.view(v.size(0), -1)
if self.fc is not None:
v = self.fc(v)
if not self.training:
return v
y = self.classifier(v)
if self.loss == 'softmax':
return y
elif self.loss == 'triplet':
return y, v
else:
raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, model_url):
"""Initializes model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
pretrain_dict = model_zoo.load_url(model_url)
model_dict = model.state_dict()
pretrain_dict = {
k: v
for k, v in pretrain_dict.items()
if k in model_dict and model_dict[k].size() == v.size()
}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
"""ResNet"""
def resnet18(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ResNet(
num_classes=num_classes,
loss=loss,
block=BasicBlock,
layers=[2, 2, 2, 2],
last_stride=2,
fc_dims=None,
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnet18'])
return model
def resnet34(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ResNet(
num_classes=num_classes,
loss=loss,
block=BasicBlock,
layers=[3, 4, 6, 3],
last_stride=2,
fc_dims=None,
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnet34'])
return model
def resnet50(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ResNet(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 6, 3],
last_stride=2,
fc_dims=None,
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnet50'])
return model
def resnet101(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ResNet(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 23, 3],
last_stride=2,
fc_dims=None,
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnet101'])
return model
def resnet152(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ResNet(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 8, 36, 3],
last_stride=2,
fc_dims=None,
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnet152'])
return model
"""ResNeXt"""
def resnext50_32x4d(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ResNet(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 6, 3],
last_stride=2,
fc_dims=None,
dropout_p=None,
groups=32,
width_per_group=4,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnext50_32x4d'])
return model
def resnext101_32x8d(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ResNet(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 23, 3],
last_stride=2,
fc_dims=None,
dropout_p=None,
groups=32,
width_per_group=8,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnext101_32x8d'])
return model
"""
ResNet + FC
"""
def resnet50_fc512(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ResNet(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 6, 3],
last_stride=1,
fc_dims=[512],
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnet50'])
return model
|