File size: 17,037 Bytes
e215925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
from __future__ import division, absolute_import
import warnings
import torch
from torch import nn
from torch.nn import functional as F

__all__ = [
    'osnet_x1_0', 'osnet_x0_75', 'osnet_x0_5', 'osnet_x0_25', 'osnet_ibn_x1_0'
]

pretrained_urls = {
    'osnet_x1_0':
    'https://drive.google.com/uc?id=1LaG1EJpHrxdAxKnSCJ_i0u-nbxSAeiFY',
    'osnet_x0_75':
    'https://drive.google.com/uc?id=1uwA9fElHOk3ZogwbeY5GkLI6QPTX70Hq',
    'osnet_x0_5':
    'https://drive.google.com/uc?id=16DGLbZukvVYgINws8u8deSaOqjybZ83i',
    'osnet_x0_25':
    'https://drive.google.com/uc?id=1rb8UN5ZzPKRc_xvtHlyDh-cSz88YX9hs',
    'osnet_ibn_x1_0':
    'https://drive.google.com/uc?id=1sr90V6irlYYDd4_4ISU2iruoRG8J__6l'
}


##########
# Basic layers
##########
class ConvLayer(nn.Module):
    """Convolution layer (conv + bn + relu)."""

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        groups=1,
        IN=False
    ):
        super(ConvLayer, self).__init__()
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            bias=False,
            groups=groups
        )
        if IN:
            self.bn = nn.InstanceNorm2d(out_channels, affine=True)
        else:
            self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class Conv1x1(nn.Module):
    """1x1 convolution + bn + relu."""

    def __init__(self, in_channels, out_channels, stride=1, groups=1):
        super(Conv1x1, self).__init__()
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            1,
            stride=stride,
            padding=0,
            bias=False,
            groups=groups
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class Conv1x1Linear(nn.Module):
    """1x1 convolution + bn (w/o non-linearity)."""

    def __init__(self, in_channels, out_channels, stride=1):
        super(Conv1x1Linear, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, out_channels, 1, stride=stride, padding=0, bias=False
        )
        self.bn = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class Conv3x3(nn.Module):
    """3x3 convolution + bn + relu."""

    def __init__(self, in_channels, out_channels, stride=1, groups=1):
        super(Conv3x3, self).__init__()
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            3,
            stride=stride,
            padding=1,
            bias=False,
            groups=groups
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class LightConv3x3(nn.Module):
    """Lightweight 3x3 convolution.

    1x1 (linear) + dw 3x3 (nonlinear).
    """

    def __init__(self, in_channels, out_channels):
        super(LightConv3x3, self).__init__()
        self.conv1 = nn.Conv2d(
            in_channels, out_channels, 1, stride=1, padding=0, bias=False
        )
        self.conv2 = nn.Conv2d(
            out_channels,
            out_channels,
            3,
            stride=1,
            padding=1,
            bias=False,
            groups=out_channels
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


##########
# Building blocks for omni-scale feature learning
##########
class ChannelGate(nn.Module):
    """A mini-network that generates channel-wise gates conditioned on input tensor."""

    def __init__(
        self,
        in_channels,
        num_gates=None,
        return_gates=False,
        gate_activation='sigmoid',
        reduction=16,
        layer_norm=False
    ):
        super(ChannelGate, self).__init__()
        if num_gates is None:
            num_gates = in_channels
        self.return_gates = return_gates
        self.global_avgpool = nn.AdaptiveAvgPool2d(1)
        self.fc1 = nn.Conv2d(
            in_channels,
            in_channels // reduction,
            kernel_size=1,
            bias=True,
            padding=0
        )
        self.norm1 = None
        if layer_norm:
            self.norm1 = nn.LayerNorm((in_channels // reduction, 1, 1))
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Conv2d(
            in_channels // reduction,
            num_gates,
            kernel_size=1,
            bias=True,
            padding=0
        )
        if gate_activation == 'sigmoid':
            self.gate_activation = nn.Sigmoid()
        elif gate_activation == 'relu':
            self.gate_activation = nn.ReLU(inplace=True)
        elif gate_activation == 'linear':
            self.gate_activation = None
        else:
            raise RuntimeError(
                "Unknown gate activation: {}".format(gate_activation)
            )

    def forward(self, x):
        input = x
        x = self.global_avgpool(x)
        x = self.fc1(x)
        if self.norm1 is not None:
            x = self.norm1(x)
        x = self.relu(x)
        x = self.fc2(x)
        if self.gate_activation is not None:
            x = self.gate_activation(x)
        if self.return_gates:
            return x
        return input * x


class OSBlock(nn.Module):
    """Omni-scale feature learning block."""

    def __init__(
        self,
        in_channels,
        out_channels,
        IN=False,
        bottleneck_reduction=4,
        **kwargs
    ):
        super(OSBlock, self).__init__()
        mid_channels = out_channels // bottleneck_reduction
        self.conv1 = Conv1x1(in_channels, mid_channels)
        self.conv2a = LightConv3x3(mid_channels, mid_channels)
        self.conv2b = nn.Sequential(
            LightConv3x3(mid_channels, mid_channels),
            LightConv3x3(mid_channels, mid_channels),
        )
        self.conv2c = nn.Sequential(
            LightConv3x3(mid_channels, mid_channels),
            LightConv3x3(mid_channels, mid_channels),
            LightConv3x3(mid_channels, mid_channels),
        )
        self.conv2d = nn.Sequential(
            LightConv3x3(mid_channels, mid_channels),
            LightConv3x3(mid_channels, mid_channels),
            LightConv3x3(mid_channels, mid_channels),
            LightConv3x3(mid_channels, mid_channels),
        )
        self.gate = ChannelGate(mid_channels)
        self.conv3 = Conv1x1Linear(mid_channels, out_channels)
        self.downsample = None
        if in_channels != out_channels:
            self.downsample = Conv1x1Linear(in_channels, out_channels)
        self.IN = None
        if IN:
            self.IN = nn.InstanceNorm2d(out_channels, affine=True)

    def forward(self, x):
        identity = x
        x1 = self.conv1(x)
        x2a = self.conv2a(x1)
        x2b = self.conv2b(x1)
        x2c = self.conv2c(x1)
        x2d = self.conv2d(x1)
        x2 = self.gate(x2a) + self.gate(x2b) + self.gate(x2c) + self.gate(x2d)
        x3 = self.conv3(x2)
        if self.downsample is not None:
            identity = self.downsample(identity)
        out = x3 + identity
        if self.IN is not None:
            out = self.IN(out)
        return F.relu(out)


##########
# Network architecture
##########
class OSNet(nn.Module):
    """Omni-Scale Network.
    
    Reference:
        - Zhou et al. Omni-Scale Feature Learning for Person Re-Identification. ICCV, 2019.
        - Zhou et al. Learning Generalisable Omni-Scale Representations
          for Person Re-Identification. TPAMI, 2021.
    """

    def __init__(
        self,
        num_classes,
        blocks,
        layers,
        channels,
        feature_dim=512,
        loss='softmax',
        IN=False,
        **kwargs
    ):
        super(OSNet, self).__init__()
        num_blocks = len(blocks)
        assert num_blocks == len(layers)
        assert num_blocks == len(channels) - 1
        self.loss = loss
        self.feature_dim = feature_dim

        # convolutional backbone
        self.conv1 = ConvLayer(3, channels[0], 7, stride=2, padding=3, IN=IN)
        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
        self.conv2 = self._make_layer(
            blocks[0],
            layers[0],
            channels[0],
            channels[1],
            reduce_spatial_size=True,
            IN=IN
        )
        self.conv3 = self._make_layer(
            blocks[1],
            layers[1],
            channels[1],
            channels[2],
            reduce_spatial_size=True
        )
        self.conv4 = self._make_layer(
            blocks[2],
            layers[2],
            channels[2],
            channels[3],
            reduce_spatial_size=False
        )
        self.conv5 = Conv1x1(channels[3], channels[3])
        self.global_avgpool = nn.AdaptiveAvgPool2d(1)
        # fully connected layer
        self.fc = self._construct_fc_layer(
            self.feature_dim, channels[3], dropout_p=None
        )
        # identity classification layer
        self.classifier = nn.Linear(self.feature_dim, num_classes)

        self._init_params()

    def _make_layer(
        self,
        block,
        layer,
        in_channels,
        out_channels,
        reduce_spatial_size,
        IN=False
    ):
        layers = []

        layers.append(block(in_channels, out_channels, IN=IN))
        for i in range(1, layer):
            layers.append(block(out_channels, out_channels, IN=IN))

        if reduce_spatial_size:
            layers.append(
                nn.Sequential(
                    Conv1x1(out_channels, out_channels),
                    nn.AvgPool2d(2, stride=2)
                )
            )

        return nn.Sequential(*layers)

    def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
        if fc_dims is None or fc_dims < 0:
            self.feature_dim = input_dim
            return None

        if isinstance(fc_dims, int):
            fc_dims = [fc_dims]

        layers = []
        for dim in fc_dims:
            layers.append(nn.Linear(input_dim, dim))
            layers.append(nn.BatchNorm1d(dim))
            layers.append(nn.ReLU(inplace=True))
            if dropout_p is not None:
                layers.append(nn.Dropout(p=dropout_p))
            input_dim = dim

        self.feature_dim = fc_dims[-1]

        return nn.Sequential(*layers)

    def _init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_out', nonlinearity='relu'
                )
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

            elif isinstance(m, nn.BatchNorm1d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def featuremaps(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        return x

    def forward(self, x, return_featuremaps=False):
        x = self.featuremaps(x)
        if return_featuremaps:
            return x
        v = self.global_avgpool(x)
        v = v.view(v.size(0), -1)
        if self.fc is not None:
            v = self.fc(v)
        if not self.training:
            return v
        y = self.classifier(v)
        if self.loss == 'softmax':
            return y
        elif self.loss == 'triplet':
            return y, v
        else:
            raise KeyError("Unsupported loss: {}".format(self.loss))


def init_pretrained_weights(model, key=''):
    """Initializes model with pretrained weights.
    
    Layers that don't match with pretrained layers in name or size are kept unchanged.
    """
    import os
    import errno
    import gdown
    from collections import OrderedDict

    def _get_torch_home():
        ENV_TORCH_HOME = 'TORCH_HOME'
        ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
        DEFAULT_CACHE_DIR = '~/.cache'
        torch_home = os.path.expanduser(
            os.getenv(
                ENV_TORCH_HOME,
                os.path.join(
                    os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch'
                )
            )
        )
        return torch_home

    torch_home = _get_torch_home()
    model_dir = os.path.join(torch_home, 'checkpoints')
    try:
        os.makedirs(model_dir)
    except OSError as e:
        if e.errno == errno.EEXIST:
            # Directory already exists, ignore.
            pass
        else:
            # Unexpected OSError, re-raise.
            raise
    filename = key + '_imagenet.pth'
    cached_file = os.path.join(model_dir, filename)

    if not os.path.exists(cached_file):
        gdown.download(pretrained_urls[key], cached_file, quiet=False)

    state_dict = torch.load(cached_file)
    model_dict = model.state_dict()
    new_state_dict = OrderedDict()
    matched_layers, discarded_layers = [], []

    for k, v in state_dict.items():
        if k.startswith('module.'):
            k = k[7:] # discard module.

        if k in model_dict and model_dict[k].size() == v.size():
            new_state_dict[k] = v
            matched_layers.append(k)
        else:
            discarded_layers.append(k)

    model_dict.update(new_state_dict)
    model.load_state_dict(model_dict)

    if len(matched_layers) == 0:
        warnings.warn(
            'The pretrained weights from "{}" cannot be loaded, '
            'please check the key names manually '
            '(** ignored and continue **)'.format(cached_file)
        )
    else:
        print(
            'Successfully loaded imagenet pretrained weights from "{}"'.
            format(cached_file)
        )
        if len(discarded_layers) > 0:
            print(
                '** The following layers are discarded '
                'due to unmatched keys or layer size: {}'.
                format(discarded_layers)
            )


##########
# Instantiation
##########
def osnet_x1_0(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
    # standard size (width x1.0)
    model = OSNet(
        num_classes,
        blocks=[OSBlock, OSBlock, OSBlock],
        layers=[2, 2, 2],
        channels=[64, 256, 384, 512],
        loss=loss,
        **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, key='osnet_x1_0')
    return model


def osnet_x0_75(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
    # medium size (width x0.75)
    model = OSNet(
        num_classes,
        blocks=[OSBlock, OSBlock, OSBlock],
        layers=[2, 2, 2],
        channels=[48, 192, 288, 384],
        loss=loss,
        **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, key='osnet_x0_75')
    return model


def osnet_x0_5(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
    # tiny size (width x0.5)
    model = OSNet(
        num_classes,
        blocks=[OSBlock, OSBlock, OSBlock],
        layers=[2, 2, 2],
        channels=[32, 128, 192, 256],
        loss=loss,
        **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, key='osnet_x0_5')
    return model


def osnet_x0_25(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
    # very tiny size (width x0.25)
    model = OSNet(
        num_classes,
        blocks=[OSBlock, OSBlock, OSBlock],
        layers=[2, 2, 2],
        channels=[16, 64, 96, 128],
        loss=loss,
        **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, key='osnet_x0_25')
    return model


def osnet_ibn_x1_0(
    num_classes=1000, pretrained=True, loss='softmax', **kwargs
):
    # standard size (width x1.0) + IBN layer
    # Ref: Pan et al. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net. ECCV, 2018.
    model = OSNet(
        num_classes,
        blocks=[OSBlock, OSBlock, OSBlock],
        layers=[2, 2, 2],
        channels=[64, 256, 384, 512],
        loss=loss,
        IN=True,
        **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, key='osnet_ibn_x1_0')
    return model