File size: 7,407 Bytes
e98e70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e262d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98e70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c983071
e98e70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87896d9
e98e70e
 
 
 
 
 
 
 
5e262d5
 
e98e70e
5e262d5
 
e98e70e
5e262d5
e98e70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e262d5
 
e98e70e
 
 
 
 
 
 
5e262d5
 
 
e98e70e
 
 
 
 
 
 
 
2d2a6a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import gradio as gr
import cv2
import numpy as np
import random
import numpy as np
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, \
    scale_coords
from utils.plots import plot_one_box
from utils.torch_utils import time_synchronized
import time



def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, r, (dw, dh)

names = ["animal",
"autorickshaw",
"bicycle",
"bus",
"car",
"motorcycle",
"person",
"rider",
"traffic light",
"traffic sign",
"truck"
]


#colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
colors  = {
    "animal": [246,198, 145],
    "autorickshaw": [255,204, 54],
    "bicycle": [119,11, 32],
    "bus": [ 0,60,100],
    "car": [ 0,0,142],
    "motorcycle": [ 0,0,230],
    "person": [220,20, 60],
    "rider": [255,0, 0],
    "traffic light": [250,170, 30],
    "traffic sign": [220,220, 0],
    "truck": [ 0,0, 70]
}


def detect(img,model,device,iou_threshold=0.45,confidence_threshold=0.25):   
    imgsz = 640
    img = np.array(img)
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    imgs = img.copy()  # for NMS
    
    image, ratio, dwdh = letterbox(img, auto=False)
    image = image.transpose((2, 0, 1))
    img = torch.from_numpy(image).to(device)
    img = img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)


    # Inference
    t1 = time_synchronized()
    start = time.time()
    with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
        pred = model(img,augment=True)[0]
    fps_inference = 1/(time.time()-start)
    t2 = time_synchronized()

    # Apply NMS
    pred = non_max_suppression(pred, confidence_threshold, iou_threshold, classes=None, agnostic=True)
    t3 = time_synchronized()

    for i, det in enumerate(pred):  # detections per image
        if len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], imgs.shape).round()


            # Write results
            for *xyxy, conf, cls in reversed(det):
                label = f'{names[int(cls)]} {conf:.2f}'
                plot_one_box(xyxy, imgs, label=label, color=colors[names[int(cls)]], line_thickness=2)

    return imgs,fps_inference

def inference(img,model_link,iou_threshold,confidence_threshold):
    print(model_link)
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    # Load model
    model_path = 'weights/'+str(model_link)+'.pt'
    model = attempt_load(model_path, map_location=device) 
    return detect(img,model,device,iou_threshold,confidence_threshold)


def inference2(video,model_link,iou_threshold,confidence_threshold):
    print(model_link)
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    # Load model
    model_path = 'weights/'+str(model_link)+'.pt'
    model = attempt_load(model_path, map_location=device) 
    frames = cv2.VideoCapture(video)
    fps = frames.get(cv2.CAP_PROP_FPS)
    image_size = (int(frames.get(cv2.CAP_PROP_FRAME_WIDTH)),int(frames.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    finalVideo = cv2.VideoWriter('output.mp4',cv2.VideoWriter_fourcc(*'VP90'), fps, image_size)
    fps_video = []
    while frames.isOpened():
        ret,frame = frames.read()
        if not ret:
            break
        frame,fps = detect(frame,model,device,iou_threshold,confidence_threshold)
        print(fps)
        fps_video.append[fps]
        finalVideo.write(frame)
    frames.release()
    finalVideo.release()
    return 'output.mp4',np.mean(fps_video)



examples_images = ['data/images/1.jpg',
            'data/images/2.jpg',
            'data/images/bus.jpg',
            'data/images/3.jpg']
examples_videos = ['data/video/1.mp4','data/video/2.mp4'] 

models = ['yolov7','yolov7t']

with gr.Blocks() as demo:
    gr.Markdown("## YOLOv7 Inference")
    with gr.Tab("Image"):
        gr.Markdown("## YOLOv7 Inference on Image")
        with gr.Row():
            image_input = gr.Image(type='pil', label="Input Image", source="upload")
            image_output = gr.Image(type='pil', label="Output Image", source="upload")
        fps_image = gr.Number(0,label='FPS')
        image_drop = gr.Dropdown(choices=models,value=models[0])
        image_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
        image_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
        gr.Examples(examples=examples_images,inputs=image_input,outputs=image_output)
        text_button = gr.Button("Detect")
    with gr.Tab("Video"):
        gr.Markdown("## YOLOv7 Inference on Video")
        with gr.Row():
            video_input = gr.Video(type='pil', label="Input Video", source="upload")
            video_output = gr.Video(type="pil", label="Output Video",format="mp4")
        fps_video = gr.Number(0,label='FPS')
        video_drop = gr.Dropdown(choices=models,value=models[0])
        video_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
        video_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
        gr.Examples(examples=examples_videos,inputs=video_input,outputs=video_output)
        video_button = gr.Button("Detect")
    
    # with gr.Tab("Webcam Video"):
    #     gr.Markdown("## YOLOv7 Inference on Webcam Video")
    #     gr.Markdown("Coming Soon")

    text_button.click(inference, inputs=[image_input,image_drop,
                                         image_iou_threshold,image_conf_threshold],
                                        outputs=[image_output,fps_image])
    video_button.click(inference2, inputs=[video_input,video_drop,
                                           video_iou_threshold,video_conf_threshold],            
                                        outputs=[video_output,fps_video])

demo.launch(debug=True,enable_queue=True)