File size: 5,011 Bytes
5935af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import yfinance as yf
import numpy as np
import pandas as pd

import streamlit as st

from utilities.py.styling import streamlit_style
from utilities.py import plots
from utilities.py import summary_tables

from pypfopt import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns

import plotly.express as px
import plotly.graph_objects as go

streamlit_style()

company_list_df = pd.read_csv("utilities/data/Company List.csv")

company_name = company_list_df["Name"].to_list()
company_symbol = (company_list_df["Ticker"] + ".NS").to_list()

name_to_symbol_dict = dict()
symbol_to_name_dict = dict()

for CSymbol, CName in zip(company_symbol, company_name):
    name_to_symbol_dict[CName] = CSymbol

for CSymbol, CName in zip(company_symbol, company_name):
    symbol_to_name_dict[CSymbol] = CName

streamlit_company_list_input = st.multiselect(
    "Select Multiple Companies", company_name, default=None
)

optimization_methods = st.selectbox(
    "Select an Optimsation Technique",
    (
        "Maximum Sharpe Ratio",
        "Efficient Risk",
        "Minimum Volatility",
        "Efficient Return",
    ),
)

company_name_to_symbol = [name_to_symbol_dict[i] for i in streamlit_company_list_input]

number_of_symbols = len(company_name_to_symbol)

start_date = st.date_input(
    "Start Date",
    format="YYYY-MM-DD",
    value=pd.Timestamp("1947-08-15"),
    max_value=pd.Timestamp.now(),
)

initial_investment = st.number_input("How much would you want to invest?", value=45000)

if number_of_symbols > 1:
    company_data = pd.DataFrame()

    for cname in company_name_to_symbol:
        stock_data_temp = yf.download(
            cname, start=start_date, end=pd.Timestamp.now().strftime("%Y-%m-%d")
        )["Adj Close"]
        stock_data_temp.name = cname
        company_data = pd.merge(
            company_data,
            stock_data_temp,
            how="outer",
            right_index=True,
            left_index=True,
        )

    for i in company_data.columns:
        company_data.dropna(axis=1, how="all", inplace=True)

    company_data.dropna(inplace=True)

    st.write(
        f"Note: Due to unavailability of full data, this Analysis uses data from the date: {company_data.index[0]}"
    )

    number_of_symbols = len(company_data.columns)

    st.dataframe(company_data, use_container_width=True)

    if number_of_symbols > 1:
        company_stock_returns_data = company_data.pct_change().dropna()

        mu = expected_returns.mean_historical_return(company_data)
        S = risk_models.sample_cov(company_data)

        ef = EfficientFrontier(mu, S)

        if optimization_methods == "Maximum Sharpe Raio":
            ef.max_sharpe()
        elif optimization_methods == "Minimum Volatility":
            ef.min_volatility()
        elif optimization_methods == "Efficient Risk":
            ef.efficient_risk(0.5)
        else:
            ef.efficient_return(0.05)

        company_asset_weights = pd.DataFrame.from_dict(
            ef.clean_weights(), orient="index"
        ).reset_index()

        company_asset_weights.columns = ["Ticker", "Allocation"]

        company_asset_weights_copy = company_asset_weights

        company_asset_weights["Name"] = [
            symbol_to_name_dict[i] for i in company_asset_weights["Ticker"]
        ]

        company_asset_weights = company_asset_weights[["Name", "Ticker", "Allocation"]]

        st.dataframe(company_asset_weights, use_container_width=True)

        ef.portfolio_performance()

        (
            expected_annual_return,
            annual_volatility,
            sharpe_ratio,
        ) = ef.portfolio_performance()

        st_portfolio_performance = pd.DataFrame.from_dict(
            {
                "Expected annual return": (expected_annual_return * 100).round(2),
                "Annual volatility": (annual_volatility * 100).round(2),
                "Sharpe ratio": sharpe_ratio.round(2),
            },
            orient="index",
        ).reset_index()

        st_portfolio_performance.columns = ["Metrics", "Summary"]

        st.write("Optimization Method - ", optimization_methods)

        st.dataframe(st_portfolio_performance, use_container_width=True)

        plots.pie_chart_company_asset_weights(company_asset_weights)

        portfolio_returns = (
            company_stock_returns_data * list(ef.clean_weights().values())
        ).sum(axis=1)

        annual_portfolio_returns = portfolio_returns.resample("Y").apply(
            lambda x: (x + 1).prod() - 1
        )

        cumulative_returns = (portfolio_returns + 1).cumprod() * initial_investment

        tab1, tab2 = st.tabs(["Plots", "Tables"])

        with tab1:
            plots.plot_annual_returns(annual_portfolio_returns)
            plots.plot_cummulative_returns(cumulative_returns)

        with tab2:
            summary_tables.annual_returns_dataframe(annual_portfolio_returns)
            summary_tables.cumulative_returns_dataframe(cumulative_returns)