Spaces:
Sleeping
Sleeping
File size: 2,792 Bytes
cb96d56 0c2b3a8 eaf5737 0c2b3a8 9f6b7ef a85dbe3 531104f 9f6b7ef 454a16a d8ae909 0607ae0 d5de817 d8ae909 454a16a 9f6b7ef d8ae909 9f6b7ef d8ae909 9f6b7ef 89761c8 9f6b7ef 89761c8 9f6b7ef 89761c8 9f6b7ef 89761c8 9f6b7ef 29f11f8 8ad42cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
title: CapiPort
emoji: 📈
sdk: streamlit
sdk_version: 1.32.0
app_file: main.py
pinned: false
license: mit
---
# <center>CapiPort V2</center>
[![Build Status](https://github.com/bhanuprasanna527/CapiPortV2/actions/workflows/HF_sync_space.yml/badge.svg)](https://github.com/bhanuprasanna527/CapiPortV2/actions)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/bhanuprasanna527/CapiPortV2/blob/main/LICENSE)
## Overview
Welcome to our project on portfolio management for Indian equity markets! This project aims to help individuals efficiently allocate their money between different equities, optimizing returns while managing risk.
## Features
- **Dynamic Allocation:** Our technique dynamically allocates funds among various equities based on a robust methodology.
- **Risk Management:** The project incorporates risk management strategies to enhance overall portfolio stability.
- **User-Friendly Interface:** Access the tool through our user-friendly web interface [here](https://huggingface.co/spaces/bhanuprasanna527/CapiPort).
## Getting Started
Follow these steps to get started with the project:
1. Clone the repository:
```bash
git clone https://github.com/bhanuprasanna527/CapiPort/
2. Install dependencies:
```bash
pip install -r requirements.txt
3. Run the project:
```bash
python main.py
## Technique used (Version 2)
1) Efficient Frontier
- Parameters used:
1.1) Maximum Sharpe Ratio\
1.2) Efficient Risk\
1.3) Efficient Return\
1.4) Minimum Volatility
2) Hierarchical Risk Parity
# Overview
1. Implementation
Input: NSE Stock Tickers, Date you want to track from, Optimization Technique, Parameter to base on, and the amount you want to invest.
Objective: Maximize expected return while minimizing portfolio variance.
Optimization: Utilize an Optimization method to find the Optimal Allocation to maximize Returns and minimize Volatility. approach, adjusting weights to find the optimal allocation.
Output: The final set of weights representing the optimal portfolio allocation, Annual Returns, Cumulative Annual Returns, Cumulative Monthly Returns, and Monthly returns. You will also be able to see Visual charts for the analysis.
#### Contributing
We welcome contributions! If you have any improvement ideas, please feel free to open an issue or submit a pull request.
License
This project is licensed under the MIT License.
## Links
1. **[Streamlit Deployment](https://capiport2.streamlit.app/)**
2. **[HuggingFace Spaces](https://huggingface.co/spaces/bhanuprasanna527/CapiPort)**
3. **[Version1 github](https://github.com/bhanuprasanna527/CapiPort)**
4. **[Version1 Spaces](https://huggingface.co/spaces/sankhyikii/CapiPort)**
|