Spaces:
Sleeping
Sleeping
File size: 8,134 Bytes
5935af9 8c08ea9 5935af9 8c08ea9 5935af9 8c08ea9 5935af9 8c08ea9 5935af9 f204da8 5935af9 f204da8 5935af9 8c08ea9 5935af9 8c08ea9 5935af9 8c08ea9 5935af9 8c08ea9 5935af9 8c08ea9 5935af9 8c08ea9 5935af9 8c08ea9 9134fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import yfinance as yf
import numpy as np
import pandas as pd
import streamlit as st
from utilities.py.styling import streamlit_style
from utilities.py import plots
from utilities.py import summary_tables
from pypfopt import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns
from pypfopt import HRPOpt, hierarchical_portfolio
import plotly.express as px
import plotly.graph_objects as go
streamlit_style()
company_list_df = pd.read_csv("utilities/data/Company List.csv")
company_name = company_list_df["Name"].to_list()
company_symbol = (company_list_df["Ticker"] + ".NS").to_list()
name_to_symbol_dict = dict()
symbol_to_name_dict = dict()
for CSymbol, CName in zip(company_symbol, company_name):
name_to_symbol_dict[CName] = CSymbol
for CSymbol, CName in zip(company_symbol, company_name):
symbol_to_name_dict[CSymbol] = CName
streamlit_company_list_input = st.multiselect(
"Select Multiple Companies", company_name, default=None
)
optimisation_method = st.selectbox(
"Choose an optimization method accordingly",
(
"Efficient Frontier",
"Hierarchical Risk Parity",
),
)
parameter_for_optimisation = 0
if optimisation_method == "Efficient Frontier":
parameter_for_optimisation = st.selectbox(
"Choose an optimization parameter accordingly",
(
"Maximum Sharpe Ratio",
"Efficient Risk",
"Minimum Volatility",
"Efficient Return",
),
)
company_name_to_symbol = [name_to_symbol_dict[i] for i in streamlit_company_list_input]
number_of_symbols = len(company_name_to_symbol)
start_date = st.date_input(
"Start Date",
format="YYYY-MM-DD",
value=pd.Timestamp("1947-08-15"),
max_value=pd.Timestamp.now(),
)
initial_investment = st.number_input("How much would you want to invest?", value=45000)
if number_of_symbols > 1:
company_data = pd.DataFrame()
for cname in company_name_to_symbol:
stock_data_temp = yf.download(
cname, start=start_date, end=pd.Timestamp.now().strftime("%Y-%m-%d")
)["Adj Close"]
stock_data_temp.name = cname
company_data = pd.merge(
company_data,
stock_data_temp,
how="outer",
right_index=True,
left_index=True,
)
company_data.dropna(axis=1, how="all", inplace=True)
company_data.dropna(inplace=True)
for i in company_data.columns:
company_data[i] = company_data[i].abs()
st.write(
f"Note: Due to unavailability of full data, this Analysis uses data from the date: {company_data.index[0]}"
)
number_of_symbols = len(company_data.columns)
st.dataframe(company_data, use_container_width=True)
if number_of_symbols > 1:
company_stock_returns_data = company_data.pct_change().dropna()
mu = 0
S = 0
ef = 0
company_asset_weights = 0
if optimisation_method == "Efficient Frontier":
mu = expected_returns.mean_historical_return(company_data)
S = risk_models.sample_cov(company_data)
ef = EfficientFrontier(mu, S)
if parameter_for_optimisation == "Maximum Sharpe Raio":
ef.max_sharpe()
elif parameter_for_optimisation == "Minimum Volatility":
ef.min_volatility()
elif parameter_for_optimisation == "Efficient Risk":
ef.efficient_risk(0.5)
else:
ef.efficient_return(0.05)
company_asset_weights = pd.DataFrame.from_dict(
ef.clean_weights(), orient="index"
).reset_index()
elif optimisation_method == "Hierarchical Risk Parity":
mu = expected_returns.returns_from_prices(company_data)
S = risk_models.sample_cov(company_data)
ef = HRPOpt(mu, S)
company_asset_weights = ef.optimize()
company_asset_weights = pd.DataFrame.from_dict(
company_asset_weights, orient="index", columns=["Weight"]
).reset_index()
company_asset_weights.columns = ["Ticker", "Allocation"]
company_asset_weights_copy = company_asset_weights
company_asset_weights["Name"] = [
symbol_to_name_dict[i] for i in company_asset_weights["Ticker"]
]
company_asset_weights = company_asset_weights[["Name", "Ticker", "Allocation"]]
st.dataframe(company_asset_weights, use_container_width=True)
ef.portfolio_performance()
(
expected_annual_return,
annual_volatility,
sharpe_ratio,
) = ef.portfolio_performance()
st_portfolio_performance = pd.DataFrame.from_dict(
{
"Expected annual return": (expected_annual_return * 100).round(2),
"Annual volatility": (annual_volatility * 100).round(2),
"Sharpe ratio": sharpe_ratio.round(2),
},
orient="index",
).reset_index()
st_portfolio_performance.columns = ["Metrics", "Summary"]
if optimisation_method == "Efficient Frontier":
st.write(
"Optimization Method - ",
optimisation_method,
"---- Parameter - ",
parameter_for_optimisation,
)
else:
st.write("Optimization Method - ", optimisation_method)
st.dataframe(st_portfolio_performance, use_container_width=True)
plots.pie_chart_company_asset_weights(company_asset_weights)
portfolio_returns = (
company_stock_returns_data * list(ef.clean_weights().values())
).sum(axis=1)
annual_portfolio_returns = portfolio_returns.resample("Y").apply(
lambda x: (x + 1).prod() - 1
)
cumulative_returns = (portfolio_returns + 1).cumprod() * initial_investment
tab1, tab2, tab3 = st.tabs(["Plots", "Annual Returns", "Montly Returns"])
with tab1:
plots.plot_annual_returns(annual_portfolio_returns)
plots.plot_cummulative_returns(cumulative_returns)
with tab2:
annual_portfolio_returns = summary_tables.annual_returns_dataframe(
annual_portfolio_returns
)
annual_cumulative_returns = (
summary_tables.annual_cumulative_returns_dataframe(cumulative_returns)
)
annual_stock_returns = summary_tables.company_wise_annual_return(
company_stock_returns_data, company_asset_weights
)
merged_annual_returns_data = pd.merge(
annual_portfolio_returns,
annual_cumulative_returns,
on="Year",
suffixes=("_portfolio", "_cumulative"),
)
merged_annual_returns_data = pd.merge(
merged_annual_returns_data, annual_stock_returns, on="Year"
)
st.write("Annual Returns")
st.dataframe(merged_annual_returns_data, use_container_width=True)
with tab3:
monthly_portfolio_return = summary_tables.monthly_returns_dataframe(
portfolio_returns
)
monthly_stock_return = summary_tables.company_wise_monthly_return(
company_stock_returns_data, company_asset_weights
)
monthly_cumulative_returns = (
summary_tables.monthly_cumulative_returns_dataframe(cumulative_returns)
)
merged_monthly_returns_data = pd.merge(
monthly_portfolio_return,
monthly_cumulative_returns,
on=["Year", "Month"],
how="inner",
)
merged_monthly_returns_data = pd.merge(
merged_monthly_returns_data,
monthly_stock_return,
on=["Year", "Month"],
how="inner",
)
st.write("Montly Return")
st.dataframe(merged_monthly_returns_data, use_container_width=True)
|