File size: 44,977 Bytes
493eaa3 50f328c 438653e 6dfa0f3 438653e 493eaa3 6dfa0f3 438653e 6dfa0f3 438653e 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 438653e 6dfa0f3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 438653e 493eaa3 6dfa0f3 438653e 6dfa0f3 438653e 493eaa3 438653e 6dfa0f3 438653e 493eaa3 6dfa0f3 438653e 6dfa0f3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 6dfa0f3 493eaa3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 438653e 6dfa0f3 438653e 493eaa3 438653e 6dfa0f3 438653e 6dfa0f3 438653e 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 6dfa0f3 493eaa3 6dfa0f3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 493eaa3 6dfa0f3 84eafe0 6dfa0f3 84eafe0 6dfa0f3 84eafe0 6dfa0f3 84eafe0 493eaa3 438653e 6dfa0f3 493eaa3 438653e 6dfa0f3 5fc911a 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 438653e 6dfa0f3 438653e 6dfa0f3 438653e 6dfa0f3 493eaa3 438653e 493eaa3 438653e 6dfa0f3 438653e 493eaa3 6dfa0f3 438653e 6dfa0f3 493eaa3 6dfa0f3 438653e 493eaa3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 84eafe0 6dfa0f3 493eaa3 6dfa0f3 84eafe0 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 ffb7037 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 5354773 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 493eaa3 79a9771 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 6dfa0f3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 6dfa0f3 493eaa3 47a17d8 493eaa3 6dfa0f3 438653e 6dfa0f3 47a17d8 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 3fd62c7 493eaa3 6dfa0f3 493eaa3 3fd62c7 493eaa3 3fd62c7 493eaa3 6dfa0f3 493eaa3 3fd62c7 493eaa3 47a17d8 493eaa3 6dfa0f3 438653e 47a17d8 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 3fd62c7 493eaa3 6dfa0f3 493eaa3 3fd62c7 493eaa3 3fd62c7 493eaa3 6dfa0f3 493eaa3 3fd62c7 6dfa0f3 438653e 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 493eaa3 6dfa0f3 493eaa3 438653e 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 438653e 6dfa0f3 493eaa3 438653e 6dfa0f3 438653e 6dfa0f3 493eaa3 6dfa0f3 438653e 6dfa0f3 438653e 6dfa0f3 438653e 6dfa0f3 2a8ac85 6dfa0f3 493eaa3 6dfa0f3 438653e 2a8ac85 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 493eaa3 6dfa0f3 8498895 493eaa3 6dfa0f3 493eaa3 6dfa0f3 cc74d7f 6dfa0f3 493eaa3 6dfa0f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
from diffusers_helper.hf_login import login
import os
import threading
import time
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import json
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
# Check if running in Hugging Face Space
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
# Track GPU availability
GPU_AVAILABLE = False
GPU_INITIALIZED = False
last_update_time = time.time()
# If running in a HF Space, import spaces
if IN_HF_SPACE:
try:
import spaces
print("Running inside a Hugging Face Space, 'spaces' module imported.")
try:
GPU_AVAILABLE = torch.cuda.is_available()
print(f"GPU available: {GPU_AVAILABLE}")
if GPU_AVAILABLE:
print(f"GPU device name: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
# Small GPU operation test
test_tensor = torch.zeros(1, device='cuda') + 1
del test_tensor
print("GPU test operation succeeded.")
else:
print("Warning: CUDA says it's available, but no GPU device was detected.")
except Exception as e:
GPU_AVAILABLE = False
print(f"Error checking GPU: {e}")
print("Falling back to CPU mode.")
except ImportError:
print("Could not import 'spaces' module. Possibly not in a HF Space.")
GPU_AVAILABLE = torch.cuda.is_available()
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel,
CLIPTextModel,
LlamaTokenizerFast,
CLIPTokenizer,
SiglipImageProcessor,
SiglipVisionModel
)
from diffusers_helper.hunyuan import (
encode_prompt_conds,
vae_decode,
vae_encode,
vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4,
crop_or_pad_yield_mask,
soft_append_bcthw,
resize_and_center_crop,
generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
cpu,
gpu,
get_cuda_free_memory_gb,
move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
fake_diffusers_current_device,
DynamicSwapInstaller,
unload_complete_models,
load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.clip_vision import hf_clip_vision_encode
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# Manage GPU memory if not in HF Space
if not IN_HF_SPACE:
try:
if torch.cuda.is_available():
free_mem_gb = get_cuda_free_memory_gb(gpu)
print(f'Free VRAM: {free_mem_gb} GB')
else:
free_mem_gb = 6.0
print("CUDA not available, using default memory setting.")
except Exception as e:
free_mem_gb = 6.0
print(f"Error getting CUDA memory: {e}, using default=6GB")
high_vram = free_mem_gb > 60
print(f'High-VRAM mode: {high_vram}')
else:
print("Using default memory settings in a HF Space.")
try:
if GPU_AVAILABLE:
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
high_vram = free_mem_gb > 10
else:
free_mem_gb = 6.0
high_vram = False
except Exception as e:
print(f"Error retrieving GPU memory: {e}")
free_mem_gb = 6.0
high_vram = False
print(f'GPU mem: {free_mem_gb:.2f} GB, high_vram={high_vram}')
models = {}
cpu_fallback_mode = not GPU_AVAILABLE
def load_models():
"""
Load the entire pipeline models (VAE, text encoders, image encoder, transformer).
"""
global models, cpu_fallback_mode, GPU_INITIALIZED
if GPU_INITIALIZED:
print("Models are already loaded. Skipping duplicate loading.")
return models
print("Starting model load...")
try:
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
model_device = 'cpu'
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
print(f"Device: {device}, VAE/encoders dtype={dtype}, transformer dtype={transformer_dtype}")
try:
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder',
torch_dtype=dtype
).to(model_device)
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2',
torch_dtype=dtype
).to(model_device)
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae',
torch_dtype=dtype
).to(model_device)
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder',
torch_dtype=dtype
).to(model_device)
# Use a custom rotating-landscape model (for example)
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"tori29umai/FramePackI2V_HY_rotate_landscape",
torch_dtype=transformer_dtype
).to(model_device)
print("All models loaded successfully.")
except Exception as e:
print(f"Error loading models: {e}")
print("Retry with float32 on CPU.")
dtype = torch.float32
transformer_dtype = torch.float32
cpu_fallback_mode = True
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder',
torch_dtype=dtype
).to('cpu')
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2',
torch_dtype=dtype
).to('cpu')
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae',
torch_dtype=dtype
).to('cpu')
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder',
torch_dtype=dtype
).to('cpu')
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"tori29umai/FramePackI2V_HY_rotate_landscape",
torch_dtype=transformer_dtype
).to('cpu')
print("Models loaded in CPU-only fallback mode.")
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram or cpu_fallback_mode:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print("transformer.high_quality_fp32_output_for_inference = True")
if not cpu_fallback_mode:
transformer.to(dtype=transformer_dtype)
vae.to(dtype=dtype)
image_encoder.to(dtype=dtype)
text_encoder.to(dtype=dtype)
text_encoder_2.to(dtype=dtype)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if torch.cuda.is_available() and not cpu_fallback_mode:
try:
if not high_vram:
DynamicSwapInstaller.install_model(transformer, device=device)
DynamicSwapInstaller.install_model(text_encoder, device=device)
else:
text_encoder.to(device)
text_encoder_2.to(device)
image_encoder.to(device)
vae.to(device)
transformer.to(device)
print(f"Successfully moved models to {device}")
except Exception as e:
print(f"Error moving models to {device}: {e}")
print("Falling back to CPU.")
cpu_fallback_mode = True
models_local = {
'text_encoder': text_encoder,
'text_encoder_2': text_encoder_2,
'tokenizer': tokenizer,
'tokenizer_2': tokenizer_2,
'vae': vae,
'feature_extractor': feature_extractor,
'image_encoder': image_encoder,
'transformer': transformer
}
GPU_INITIALIZED = True
models.update(models_local)
print(f"Model load complete. Mode: {'CPU' if cpu_fallback_mode else 'GPU'}")
return models
except Exception as e:
print(f"Unexpected error in load_models(): {e}")
traceback.print_exc()
cpu_fallback_mode = True
return {}
# Use GPU decorator if in HF Space
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
try:
@spaces.GPU
def initialize_models():
global GPU_INITIALIZED
try:
result = load_models()
GPU_INITIALIZED = True
return result
except Exception as e:
print(f"Error in @spaces.GPU model init: {e}")
global cpu_fallback_mode
cpu_fallback_mode = True
return load_models()
except Exception as e:
print(f"Error creating spaces.GPU decorator: {e}")
def initialize_models():
return load_models()
else:
def initialize_models():
return load_models()
def get_models():
"""
Retrieve the global models or load them if not yet loaded.
"""
global models
model_loading_key = "__model_loading__"
if not models:
if model_loading_key in globals():
print("Models are loading. Please wait.")
import time
start_time = time.time()
while (not models) and (model_loading_key in globals()):
time.sleep(0.5)
if time.time() - start_time > 60:
print("Timed out waiting for model load.")
break
if models:
return models
try:
globals()[model_loading_key] = True
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
try:
print("Loading models via @spaces.GPU")
models_local = initialize_models()
models.update(models_local)
except Exception as e:
print(f"GPU decorator load error: {e}, fallback to direct load.")
models_local = load_models()
models.update(models_local)
else:
models_local = load_models()
models.update(models_local)
except Exception as e:
print(f"Unexpected error while loading models: {e}")
models.clear()
finally:
if model_loading_key in globals():
del globals()[model_loading_key]
return models
# Predefined resolutions for a rotating-landscape scenario
PREDEFINED_RESOLUTIONS = [
(416, 960), (448, 864), (480, 832), (512, 768), (544, 704),
(576, 672), (608, 640), (640, 608), (672, 576), (704, 544),
(768, 512), (832, 480), (864, 448), (960, 416)
]
def find_closest_aspect_ratio(width, height, target_resolutions):
"""
Find the resolution in 'target_resolutions' whose aspect ratio
is closest to the original image aspect ratio (width/height).
"""
original_aspect = width / height
min_diff = float('inf')
closest_resolution = None
for tw, th in target_resolutions:
target_aspect = tw / th
diff = abs(original_aspect - target_aspect)
if diff < min_diff:
min_diff = diff
closest_resolution = (tw, th)
return closest_resolution
stream = AsyncStream()
@torch.no_grad()
def worker(
input_image,
prompt,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache
):
"""
Background worker that performs the actual generation.
"""
global last_update_time
last_update_time = time.time()
# For demonstration, limit max length to 3 seconds
total_second_length = min(total_second_length, 3.0)
try:
models_local = get_models()
if not models_local:
err_msg = "Failed to load models. Check logs for details."
print(err_msg)
stream.output_queue.push(('error', err_msg))
stream.output_queue.push(('end', None))
return
text_encoder = models_local['text_encoder']
text_encoder_2 = models_local['text_encoder_2']
tokenizer = models_local['tokenizer']
tokenizer_2 = models_local['tokenizer_2']
vae = models_local['vae']
feature_extractor = models_local['feature_extractor']
image_encoder = models_local['image_encoder']
transformer = models_local['transformer']
except Exception as e:
err = f"Error retrieving models: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
print(f"Inference device: {device}")
# Adjust parameters if in CPU fallback
if cpu_fallback_mode:
print("CPU fallback mode: using smaller parameters for performance.")
latent_window_size = min(latent_window_size, 5)
steps = min(steps, 15)
total_second_length = min(total_second_length, 2.0)
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
last_output_filename = None
history_pixels = None
history_latents = None
total_generated_latent_frames = 0
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as e:
print(f"Error unloading models: {e}")
# Text encode
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Encoding text ...'))))
try:
if not high_vram and not cpu_fallback_mode:
fake_diffusers_current_device(text_encoder, device)
load_model_as_complete(text_encoder_2, target_device=device)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
except Exception as e:
err = f"Text encoding error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# Process input image
try:
H, W, C = input_image.shape
target_w, target_h = find_closest_aspect_ratio(W, H, PREDEFINED_RESOLUTIONS)
# If CPU fallback, scale down
if cpu_fallback_mode:
scale_factor = min(320 / target_h, 320 / target_w)
target_h = int(target_h * scale_factor)
target_w = int(target_w * scale_factor)
print(f"Original image: {W}x{H}, resizing to: {target_w}x{target_h}")
input_image_np = resize_and_center_crop(input_image, target_width=target_w, target_height=target_h)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
except Exception as e:
err = f"Image processing error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# VAE encode
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(vae, target_device=device)
start_latent = vae_encode(input_image_pt, vae)
except Exception as e:
err = f"VAE encode error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# CLIP Vision
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(image_encoder, target_device=device)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
except Exception as e:
err = f"CLIP Vision encode error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# Convert dtype
try:
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
except Exception as e:
err = f"Data type conversion error: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
# Sampling
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting sampling...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
try:
history_latents = torch.zeros(
size=(1, 16, 1 + 2 + 16, target_h // 8, target_w // 8),
dtype=torch.float32
).cpu()
history_pixels = None
total_generated_latent_frames = 0
except Exception as e:
err = f"Error initializing history latents: {e}"
print(err)
traceback.print_exc()
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
latent_paddings = list(reversed(range(total_latent_sections)))
if total_latent_sections > 4:
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
for latent_padding in latent_paddings:
last_update_time = time.time()
is_last_section = (latent_padding == 0)
latent_padding_size = latent_padding * latent_window_size
if stream.input_queue.top() == 'end':
if history_pixels is not None and total_generated_latent_frames > 0:
try:
final_name = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, final_name, fps=30, crf=18)
stream.output_queue.push(('file', final_name))
except Exception as e:
print(f"Error saving final partial video: {e}")
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section={is_last_section}')
try:
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
cidx_pre,
blank_indices,
latent_indices,
cidx_post,
cidx_2x,
cidx_4x
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([cidx_pre, cidx_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
c_latents_post, c_latents_2x, c_latents_4x = history_latents[:, :, :1 + 2 + 16].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, c_latents_post], dim=2)
except Exception as e:
err = f"Error preparing sampling data: {e}"
print(err)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models()
move_model_to_device_with_memory_preservation(
transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation
)
except Exception as e:
print(f"Error moving transformer to GPU: {e}")
if use_teacache and not cpu_fallback_mode:
try:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
except Exception as e:
print(f"Error initializing TeaCache: {e}")
transformer.initialize_teacache(enable_teacache=False)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
global last_update_time
last_update_time = time.time()
try:
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User requested stop.')
preview_latents = d['denoised']
preview_latents = vae_decode_fake(preview_latents)
preview_img = (preview_latents * 255.0).cpu().numpy().clip(0,255).astype(np.uint8)
preview_img = einops.rearrange(preview_img, 'b c t h w -> (b h) (t w) c')
curr_step = d['i'] + 1
percentage = int(100.0 * curr_step / steps)
hint = f'Sampling {curr_step}/{steps}'
desc = f'Generated frames so far: {int(max(0, total_generated_latent_frames * 4 - 3))}'
bar_html = make_progress_bar_html(percentage, hint)
stream.output_queue.push(('progress', (preview_img, desc, bar_html)))
except KeyboardInterrupt:
raise
except Exception as exc:
print(f"Error in sampling callback: {exc}")
return
try:
print(f"Sampling: device={device}, dtype={transformer.dtype}, teacache={use_teacache}")
try:
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=target_w,
height=target_h,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=transformer.dtype,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=c_latents_2x,
clean_latent_2x_indices=cidx_2x,
clean_latents_4x=c_latents_4x,
clean_latent_4x_indices=cidx_4x,
callback=callback
)
except KeyboardInterrupt as e:
print(f"User interrupt: {e}")
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
err_msg = "User stopped generation; partial video returned."
else:
err_msg = "User stopped generation; no video produced."
stream.output_queue.push(('error', err_msg))
stream.output_queue.push(('end', None))
return
except Exception as e:
print(f"Error during sampling: {e}")
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
err_msg = f"Sampling error; partial video returned: {e}"
stream.output_queue.push(('error', err_msg))
else:
err_msg = f"Sampling error; no video produced: {e}"
stream.output_queue.push(('error', err_msg))
stream.output_queue.push(('end', None))
return
try:
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
except Exception as e:
err = f"Error merging latent outputs: {e}"
print(err)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
stream.output_queue.push(('error', err))
stream.output_queue.push(('end', None))
return
if not high_vram and not cpu_fallback_mode:
try:
offload_model_from_device_for_memory_preservation(
transformer, target_device=device, preserved_memory_gb=8
)
load_model_as_complete(vae, target_device=device)
except Exception as e:
print(f"Error managing model memory: {e}")
try:
real_history_latents = history_latents[:, :, :total_generated_latent_frames]
except Exception as e:
err = f"Error slicing latents history: {e}"
print(err)
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
try:
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=18)
last_output_filename = output_filename
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"Error decoding/saving video: {e}")
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
err = f"Error decoding/saving video: {e}"
stream.output_queue.push(('error', err))
continue
if is_last_section:
break
except Exception as e:
print(f"Outer error: {e}, type={type(e)}")
traceback.print_exc()
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as ue:
print(f"Unload error: {ue}")
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
err = f"Error in worker: {e}"
stream.output_queue.push(('error', err))
print("Worker finished, pushing end.")
stream.output_queue.push(('end', None))
# Create a processing function with or without the HF Spaces GPU decorator
if IN_HF_SPACE and 'spaces' in globals():
@spaces.GPU
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, use_teacache):
global stream
assert input_image is not None, "No input image provided."
# Fix certain parameters for simplicity
latent_window_size = 9
steps = 25
cfg = 1.0
gs = 10.0
rs = 0.0
gpu_memory_preservation = 6
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
async_run(
worker,
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache
)
output_filename = None
prev_output_filename = None
error_message = None
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
elif flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
elif flag == 'error':
error_message = data
print(f"Received error: {error_message}")
elif flag == 'end':
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
if error_message:
yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
else:
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"Error processing output: {e}")
if (time.time() - last_update_time) > 60:
print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.")
if prev_output_filename:
yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
else:
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"Error starting process: {e}")
traceback.print_exc()
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
process = process_with_gpu
else:
def process(input_image, prompt, n_prompt, seed, total_second_length, use_teacache):
global stream
assert input_image is not None, "No input image provided."
latent_window_size = 9
steps = 25
cfg = 1.0
gs = 10.0
rs = 0.0
gpu_memory_preservation = 6
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
async_run(
worker,
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache
)
output_filename = None
prev_output_filename = None
error_message = None
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
elif flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
elif flag == 'error':
error_message = data
print(f"Received error: {error_message}")
elif flag == 'end':
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
if error_message:
yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
else:
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"Error processing output: {e}")
if (time.time() - last_update_time) > 60:
print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.")
if prev_output_filename:
yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
else:
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"Error starting process: {e}")
traceback.print_exc()
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False)
def end_process():
"""
Stop generation by pushing 'end' signal into the queue.
"""
print("User clicked the stop button, sending 'end' signal...")
global stream
if 'stream' in globals() and stream is not None:
try:
current_top = stream.input_queue.top()
print(f"Queue top signal: {current_top}")
except Exception as e:
print(f"Error checking queue status: {e}")
try:
stream.input_queue.push('end')
print("Successfully pushed 'end' signal.")
except Exception as e:
print(f"Error pushing 'end' signal: {e}")
else:
print("Warning: 'stream' is not initialized; cannot stop.")
return None
quick_prompts = [
["The camera smoothly orbits around the center of the scene, keeping the center point fixed and always in view"]
]
def make_custom_css():
base_progress_css = make_progress_bar_css()
enhanced_css = """
body {
background: #f9fafb !important;
font-family: "Noto Sans", sans-serif;
}
#app-container {
max-width: 1200px;
margin: 0 auto;
padding: 1rem;
position: relative;
}
h1 {
font-size: 2rem;
text-align: center;
margin-bottom: 1rem;
color: #2d3748;
font-weight: 700;
}
.start-btn, .stop-btn {
min-height: 45px;
font-size: 1rem;
font-weight: 600;
}
.start-btn {
background-color: #3182ce !important;
color: #fff !important;
}
.stop-btn {
background-color: #e53e3e !important;
color: #fff !important;
}
.button-container button:hover {
filter: brightness(0.95);
}
.preview-container, .video-container {
border: 1px solid #cbd5e0;
border-radius: 8px;
overflow: hidden;
}
.progress-container {
margin-top: 15px;
margin-bottom: 15px;
}
.error-message {
background-color: #fff5f5;
border: 1px solid #fed7d7;
color: #e53e3e;
padding: 10px;
border-radius: 4px;
margin-top: 10px;
}
.error-icon {
color: #e53e3e;
margin-right: 8px;
}
#error-message {
color: #ff4444;
font-weight: bold;
padding: 10px;
border-radius: 4px;
margin-top: 10px;
}
@media (max-width: 768px) {
#app-container {
padding: 0.5rem;
}
.mobile-full-width {
flex-direction: column !important;
}
.mobile-full-width > .gr-block {
width: 100% !important;
}
}
"""
return base_progress_css + enhanced_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
gr.HTML("<h1>FramePack Rotate-Landscape - Generate Rotating Landscape Video</h1>")
with gr.Row(elem_classes="mobile-full-width"):
with gr.Column(scale=1):
input_image = gr.Image(
sources='upload',
type="numpy",
label="Upload Image",
height=320
)
prompt = gr.Textbox(
label="Prompt",
value='The camera smoothly orbits around the center of the scene...',
)
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label="Quick Prompts",
samples_per_page=1000,
components=[prompt]
)
example_quick_prompts.click(
lambda x: x[0],
inputs=[example_quick_prompts],
outputs=prompt,
show_progress=False,
queue=False
)
with gr.Row(elem_classes="button-container"):
start_button = gr.Button(
value="Generate",
elem_classes="start-btn",
variant="primary"
)
end_button = gr.Button(
value="Stop",
elem_classes="stop-btn",
interactive=False
)
use_teacache = gr.Checkbox(
label="Use TeaCache",
value=True,
info="Faster speed, but possibly worse finger/hand generation."
)
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
seed = gr.Number(label="Seed", value=31337, precision=0)
total_second_length = gr.Slider(
label="Video length (max 3 seconds)",
minimum=0.5, maximum=3, value=1.0, step=0.1
)
with gr.Column(scale=1):
preview_image = gr.Image(
label="Preview",
height=200,
visible=False,
elem_classes="preview-container"
)
result_video = gr.Video(
label="Generated Video",
autoplay=True,
loop=True,
show_share_button=True,
height=512,
elem_classes="video-container"
)
gr.HTML("""
<div>
Note: Due to reversed sampling, ending actions may appear before starting actions. If the start action is missing, please wait for further frames.
</div>
""")
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown('')
progress_bar = gr.HTML('')
error_message = gr.HTML('', elem_id='error-message', visible=True)
# Inputs
ips = [input_image, prompt, n_prompt, seed, total_second_length, use_teacache]
start_button.click(
fn=process,
inputs=ips,
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
)
end_button.click(fn=end_process)
block.launch()
|