Spaces:
Sleeping
Sleeping
File size: 3,930 Bytes
0b756df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import cv2
import numpy as np
from insightface.utils import face_align
from face_parsing.swap import swap_regions
from utils import add_logo_to_image
swap_options_list = [
"All face",
"Age less than",
"Age greater than",
"All Male",
"All Female",
"Specific Face",
]
def swap_face(whole_img, target_face, source_face, models):
inswapper = models.get("swap")
face_enhancer = models.get("enhance", None)
face_parser = models.get("face_parser", None)
fe_enable = models.get("enhance_sett", False)
bgr_fake, M = inswapper.get(whole_img, target_face, source_face, paste_back=False)
image_size = 128 if not fe_enable else 512
aimg, _ = face_align.norm_crop2(whole_img, target_face.kps, image_size=image_size)
if face_parser is not None:
fp_enable, mi, me, mb = models.get("face_parser_sett")
if fp_enable:
bgr_fake, parsed_mask = swap_regions(
bgr_fake, aimg, face_parser, includes=mi, excludes=me, blur_size=mb
)
if fe_enable:
_, bgr_fake, _ = face_enhancer.enhance(
bgr_fake, paste_back=True, has_aligned=True
)
bgr_fake = bgr_fake[0]
M /= 0.25
IM = cv2.invertAffineTransform(M)
img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32)
bgr_fake = cv2.warpAffine(
bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
)
img_white = cv2.warpAffine(
img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
)
img_white[img_white > 20] = 255
img_mask = img_white
mask_h_inds, mask_w_inds = np.where(img_mask == 255)
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
mask_size = int(np.sqrt(mask_h * mask_w))
k = max(mask_size // 10, 10)
img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1)
k = max(mask_size // 20, 5)
kernel_size = (k, k)
blur_size = tuple(2 * i + 1 for i in kernel_size)
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) / 255
img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32)
fake_merged = add_logo_to_image(fake_merged.astype("uint8"))
return fake_merged
def swap_face_with_condition(
whole_img, target_faces, source_face, condition, age, models
):
swapped = whole_img.copy()
for target_face in target_faces:
if condition == "All face":
swapped = swap_face(swapped, target_face, source_face, models)
elif condition == "Age less than" and target_face["age"] < age:
swapped = swap_face(swapped, target_face, source_face, models)
elif condition == "Age greater than" and target_face["age"] > age:
swapped = swap_face(swapped, target_face, source_face, models)
elif condition == "All Male" and target_face["gender"] == 1:
swapped = swap_face(swapped, target_face, source_face, models)
elif condition == "All Female" and target_face["gender"] == 0:
swapped = swap_face(swapped, target_face, source_face, models)
return swapped
def swap_specific(source_specifics, target_faces, whole_img, models, threshold=0.6):
swapped = whole_img.copy()
for source_face, specific_face in source_specifics:
specific_embed = specific_face["embedding"]
specific_embed /= np.linalg.norm(specific_embed)
for target_face in target_faces:
target_embed = target_face["embedding"]
target_embed /= np.linalg.norm(target_embed)
cosine_distance = 1 - np.dot(specific_embed, target_embed)
if cosine_distance > threshold:
continue
swapped = swap_face(swapped, target_face, source_face, models)
return swapped
|