File size: 6,195 Bytes
d3bc7f9 bf9ea44 d3bc7f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import random
import gradio as gr
import numpy as np
import spaces
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline
# Device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hyperparameters
NUM_VIEWS = 6
HEIGHT = 768
WIDTH = 768
MAX_SEED = np.iinfo(np.int32).max
pipe = prepare_pipeline(
base_model="stabilityai/stable-diffusion-xl-base-1.0",
vae_model="madebyollin/sdxl-vae-fp16-fix",
unet_model=None,
lora_model=None,
adapter_path="huanngzh/mv-adapter",
scheduler=None,
num_views=NUM_VIEWS,
device=device,
dtype=dtype,
)
# remove bg
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
@spaces.GPU()
def infer(
prompt,
image,
do_rembg=True,
seed=42,
randomize_seed=False,
guidance_scale=3.0,
num_inference_steps=30,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
progress=gr.Progress(track_tqdm=True),
):
if do_rembg:
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device)
else:
remove_bg_fn = None
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if isinstance(seed, str):
try:
seed = int(seed.strip())
except ValueError:
seed = 42
images, preprocessed_image = run_pipeline(
pipe,
num_views=NUM_VIEWS,
text=prompt,
image=image,
height=HEIGHT,
width=WIDTH,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
remove_bg_fn=remove_bg_fn,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
device=device,
)
return images, preprocessed_image, seed
examples = [
[
"A decorative figurine of a young anime-style girl",
"assets/demo/i2mv/A_decorative_figurine_of_a_young_anime-style_girl.png",
True,
21,
],
[
"A juvenile emperor penguin chick",
"assets/demo/i2mv/A_juvenile_emperor_penguin_chick.png",
True,
0,
],
[
"A striped tabby cat with white fur sitting upright",
"assets/demo/i2mv/A_striped_tabby_cat_with_white_fur_sitting_upright.png",
True,
0,
],
]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(
f"""# MV-Adapter [Image-to-Multi-View]
Generate 768x768 multi-view images from a single image using SDXL <br>
[[page](https://huanngzh.github.io/MV-Adapter-Page/)] [[repo](https://github.com/huanngzh/MV-Adapter)]
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
sources=["upload", "webcam", "clipboard"],
type="pil",
)
preprocessed_image = gr.Image(label="Preprocessed Image", type="pil")
prompt = gr.Textbox(
label="Prompt", placeholder="Enter your prompt", value="high quality"
)
do_rembg = gr.Checkbox(label="Remove background", value=True)
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
with gr.Row():
guidance_scale = gr.Slider(
label="CFG scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.0,
)
with gr.Row():
reference_conditioning_scale = gr.Slider(
label="Image conditioning scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
)
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter your negative prompt",
value="watermark, ugly, deformed, noisy, blurry, low contrast",
)
with gr.Column():
result = gr.Gallery(
label="Result",
show_label=False,
columns=[3],
rows=[2],
object_fit="contain",
height="auto",
)
with gr.Row():
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, input_image, do_rembg, seed],
outputs=[result, preprocessed_image, seed],
cache_examples=True,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
input_image,
do_rembg,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
reference_conditioning_scale,
negative_prompt,
],
outputs=[result, preprocessed_image, seed],
)
demo.launch()
|