Spaces:
Running
Running
File size: 54,862 Bytes
b1f90a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 |
import asyncio
import json
import logging
import os
import threading
import uuid
from pathlib import Path
from typing import Any, Dict, List, Optional, TypedDict
from browser_use.browser.browser import BrowserConfig
from langchain_community.tools.file_management import (
ListDirectoryTool,
ReadFileTool,
WriteFileTool,
)
# Langchain imports
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import StructuredTool, Tool
# Langgraph imports
from langgraph.graph import StateGraph
from pydantic import BaseModel, Field
from browser_use.browser.context import BrowserContextConfig
from src.agent.browser_use.browser_use_agent import BrowserUseAgent
from src.browser.custom_browser import CustomBrowser
from src.controller.custom_controller import CustomController
from src.utils.mcp_client import setup_mcp_client_and_tools
logger = logging.getLogger(__name__)
# Constants
REPORT_FILENAME = "report.md"
PLAN_FILENAME = "research_plan.md"
SEARCH_INFO_FILENAME = "search_info.json"
_AGENT_STOP_FLAGS = {}
_BROWSER_AGENT_INSTANCES = {}
async def run_single_browser_task(
task_query: str,
task_id: str,
llm: Any, # Pass the main LLM
browser_config: Dict[str, Any],
stop_event: threading.Event,
use_vision: bool = False,
) -> Dict[str, Any]:
"""
Runs a single BrowserUseAgent task.
Manages browser creation and closing for this specific task.
"""
if not BrowserUseAgent:
return {
"query": task_query,
"error": "BrowserUseAgent components not available.",
}
# --- Browser Setup ---
# These should ideally come from the main agent's config
headless = browser_config.get("headless", False)
window_w = browser_config.get("window_width", 1280)
window_h = browser_config.get("window_height", 1100)
browser_user_data_dir = browser_config.get("user_data_dir", None)
use_own_browser = browser_config.get("use_own_browser", False)
browser_binary_path = browser_config.get("browser_binary_path", None)
wss_url = browser_config.get("wss_url", None)
cdp_url = browser_config.get("cdp_url", None)
disable_security = browser_config.get("disable_security", False)
bu_browser = None
bu_browser_context = None
try:
logger.info(f"Starting browser task for query: {task_query}")
extra_args = []
if use_own_browser:
browser_binary_path = os.getenv("BROWSER_PATH", None) or browser_binary_path
if browser_binary_path == "":
browser_binary_path = None
browser_user_data = browser_user_data_dir or os.getenv("BROWSER_USER_DATA", None)
if browser_user_data:
extra_args += [f"--user-data-dir={browser_user_data}"]
else:
browser_binary_path = None
bu_browser = CustomBrowser(
config=BrowserConfig(
headless=headless,
browser_binary_path=browser_binary_path,
extra_browser_args=extra_args,
wss_url=wss_url,
cdp_url=cdp_url,
new_context_config=BrowserContextConfig(
window_width=window_w,
window_height=window_h,
)
)
)
context_config = BrowserContextConfig(
save_downloads_path="./tmp/downloads",
window_height=window_h,
window_width=window_w,
force_new_context=True,
)
bu_browser_context = await bu_browser.new_context(config=context_config)
# Simple controller example, replace with your actual implementation if needed
bu_controller = CustomController()
# Construct the task prompt for BrowserUseAgent
# Instruct it to find specific info and return title/URL
bu_task_prompt = f"""
Research Task: {task_query}
Objective: Find relevant information answering the query.
Output Requirements: For each relevant piece of information found, please provide:
1. A concise summary of the information.
2. The title of the source page or document.
3. The URL of the source.
Focus on accuracy and relevance. Avoid irrelevant details.
PDF cannot directly extract _content, please try to download first, then using read_file, if you can't save or read, please try other methods.
"""
bu_agent_instance = BrowserUseAgent(
task=bu_task_prompt,
llm=llm, # Use the passed LLM
browser=bu_browser,
browser_context=bu_browser_context,
controller=bu_controller,
use_vision=use_vision,
source="webui",
)
# Store instance for potential stop() call
task_key = f"{task_id}_{uuid.uuid4()}"
_BROWSER_AGENT_INSTANCES[task_key] = bu_agent_instance
# --- Run with Stop Check ---
# BrowserUseAgent needs to internally check a stop signal or have a stop method.
# We simulate checking before starting and assume `run` might be interruptible
# or have its own stop mechanism we can trigger via bu_agent_instance.stop().
if stop_event.is_set():
logger.info(f"Browser task for '{task_query}' cancelled before start.")
return {"query": task_query, "result": None, "status": "cancelled"}
# The run needs to be awaitable and ideally accept a stop signal or have a .stop() method
# result = await bu_agent_instance.run(max_steps=max_steps) # Add max_steps if applicable
# Let's assume a simplified run for now
logger.info(f"Running BrowserUseAgent for: {task_query}")
result = await bu_agent_instance.run() # Assuming run is the main method
logger.info(f"BrowserUseAgent finished for: {task_query}")
final_data = result.final_result()
if stop_event.is_set():
logger.info(f"Browser task for '{task_query}' stopped during execution.")
return {"query": task_query, "result": final_data, "status": "stopped"}
else:
logger.info(f"Browser result for '{task_query}': {final_data}")
return {"query": task_query, "result": final_data, "status": "completed"}
except Exception as e:
logger.error(
f"Error during browser task for query '{task_query}': {e}", exc_info=True
)
return {"query": task_query, "error": str(e), "status": "failed"}
finally:
if bu_browser_context:
try:
await bu_browser_context.close()
bu_browser_context = None
logger.info("Closed browser context.")
except Exception as e:
logger.error(f"Error closing browser context: {e}")
if bu_browser:
try:
await bu_browser.close()
bu_browser = None
logger.info("Closed browser.")
except Exception as e:
logger.error(f"Error closing browser: {e}")
if task_key in _BROWSER_AGENT_INSTANCES:
del _BROWSER_AGENT_INSTANCES[task_key]
class BrowserSearchInput(BaseModel):
queries: List[str] = Field(
description="List of distinct search queries to find information relevant to the research task."
)
async def _run_browser_search_tool(
queries: List[str],
task_id: str, # Injected dependency
llm: Any, # Injected dependency
browser_config: Dict[str, Any],
stop_event: threading.Event,
max_parallel_browsers: int = 1,
) -> List[Dict[str, Any]]:
"""
Internal function to execute parallel browser searches based on LLM-provided queries.
Handles concurrency and stop signals.
"""
# Limit queries just in case LLM ignores the description
queries = queries[:max_parallel_browsers]
logger.info(
f"[Browser Tool {task_id}] Running search for {len(queries)} queries: {queries}"
)
results = []
semaphore = asyncio.Semaphore(max_parallel_browsers)
async def task_wrapper(query):
async with semaphore:
if stop_event.is_set():
logger.info(
f"[Browser Tool {task_id}] Skipping task due to stop signal: {query}"
)
return {"query": query, "result": None, "status": "cancelled"}
# Pass necessary injected configs and the stop event
return await run_single_browser_task(
query,
task_id,
llm, # Pass the main LLM (or a dedicated one if needed)
browser_config,
stop_event,
# use_vision could be added here if needed
)
tasks = [task_wrapper(query) for query in queries]
search_results = await asyncio.gather(*tasks, return_exceptions=True)
processed_results = []
for i, res in enumerate(search_results):
query = queries[i] # Get corresponding query
if isinstance(res, Exception):
logger.error(
f"[Browser Tool {task_id}] Gather caught exception for query '{query}': {res}",
exc_info=True,
)
processed_results.append(
{"query": query, "error": str(res), "status": "failed"}
)
elif isinstance(res, dict):
processed_results.append(res)
else:
logger.error(
f"[Browser Tool {task_id}] Unexpected result type for query '{query}': {type(res)}"
)
processed_results.append(
{"query": query, "error": "Unexpected result type", "status": "failed"}
)
logger.info(
f"[Browser Tool {task_id}] Finished search. Results count: {len(processed_results)}"
)
return processed_results
def create_browser_search_tool(
llm: Any,
browser_config: Dict[str, Any],
task_id: str,
stop_event: threading.Event,
max_parallel_browsers: int = 1,
) -> StructuredTool:
"""Factory function to create the browser search tool with necessary dependencies."""
# Use partial to bind the dependencies that aren't part of the LLM call arguments
from functools import partial
bound_tool_func = partial(
_run_browser_search_tool,
task_id=task_id,
llm=llm,
browser_config=browser_config,
stop_event=stop_event,
max_parallel_browsers=max_parallel_browsers,
)
return StructuredTool.from_function(
coroutine=bound_tool_func,
name="parallel_browser_search",
description=f"""Use this tool to actively search the web for information related to a specific research task or question.
It runs up to {max_parallel_browsers} searches in parallel using a browser agent for better results than simple scraping.
Provide a list of distinct search queries(up to {max_parallel_browsers}) that are likely to yield relevant information.""",
args_schema=BrowserSearchInput,
)
# --- Langgraph State Definition ---
class ResearchTaskItem(TypedDict):
# step: int # Maybe step within category, or just implicit by order
task_description: str
status: str # "pending", "completed", "failed"
queries: Optional[List[str]]
result_summary: Optional[str]
class ResearchCategoryItem(TypedDict):
category_name: str
tasks: List[ResearchTaskItem]
# Optional: category_status: str # Could be "pending", "in_progress", "completed"
class DeepResearchState(TypedDict):
task_id: str
topic: str
research_plan: List[ResearchCategoryItem] # CHANGED
search_results: List[Dict[str, Any]]
llm: Any
tools: List[Tool]
output_dir: Path
browser_config: Dict[str, Any]
final_report: Optional[str]
current_category_index: int
current_task_index_in_category: int
stop_requested: bool
error_message: Optional[str]
messages: List[BaseMessage]
# --- Langgraph Nodes ---
def _load_previous_state(task_id: str, output_dir: str) -> Dict[str, Any]:
state_updates = {}
plan_file = os.path.join(output_dir, PLAN_FILENAME)
search_file = os.path.join(output_dir, SEARCH_INFO_FILENAME)
loaded_plan: List[ResearchCategoryItem] = []
next_cat_idx, next_task_idx = 0, 0
found_pending = False
if os.path.exists(plan_file):
try:
with open(plan_file, "r", encoding="utf-8") as f:
current_category: Optional[ResearchCategoryItem] = None
lines = f.readlines()
cat_counter = 0
task_counter_in_cat = 0
for line_num, line_content in enumerate(lines):
line = line_content.strip()
if line.startswith("## "): # Category
if current_category: # Save previous category
loaded_plan.append(current_category)
if not found_pending: # If previous category was all done, advance cat counter
cat_counter += 1
task_counter_in_cat = 0
category_name = line[line.find(" "):].strip() # Get text after "## X. "
current_category = ResearchCategoryItem(category_name=category_name, tasks=[])
elif (line.startswith("- [ ]") or line.startswith("- [x]") or line.startswith(
"- [-]")) and current_category: # Task
status = "pending"
if line.startswith("- [x]"):
status = "completed"
elif line.startswith("- [-]"):
status = "failed"
task_desc = line[5:].strip()
current_category["tasks"].append(
ResearchTaskItem(task_description=task_desc, status=status, queries=None,
result_summary=None)
)
if status == "pending" and not found_pending:
next_cat_idx = cat_counter
next_task_idx = task_counter_in_cat
found_pending = True
if not found_pending: # only increment if previous tasks were completed/failed
task_counter_in_cat += 1
if current_category: # Append last category
loaded_plan.append(current_category)
if loaded_plan:
state_updates["research_plan"] = loaded_plan
if not found_pending and loaded_plan: # All tasks were completed or failed
next_cat_idx = len(loaded_plan) # Points beyond the last category
next_task_idx = 0
state_updates["current_category_index"] = next_cat_idx
state_updates["current_task_index_in_category"] = next_task_idx
logger.info(
f"Loaded hierarchical research plan from {plan_file}. "
f"Next task: Category {next_cat_idx}, Task {next_task_idx} in category."
)
else:
logger.warning(f"Plan file {plan_file} was empty or malformed.")
except Exception as e:
logger.error(f"Failed to load or parse research plan {plan_file}: {e}", exc_info=True)
state_updates["error_message"] = f"Failed to load research plan: {e}"
else:
logger.info(f"Plan file {plan_file} not found. Will start fresh.")
if os.path.exists(search_file):
try:
with open(search_file, "r", encoding="utf-8") as f:
state_updates["search_results"] = json.load(f)
logger.info(f"Loaded search results from {search_file}")
except Exception as e:
logger.error(f"Failed to load search results {search_file}: {e}")
state_updates["error_message"] = (
state_updates.get("error_message", "") + f" Failed to load search results: {e}").strip()
return state_updates
def _save_plan_to_md(plan: List[ResearchCategoryItem], output_dir: str):
plan_file = os.path.join(output_dir, PLAN_FILENAME)
try:
with open(plan_file, "w", encoding="utf-8") as f:
f.write(f"# Research Plan\n\n")
for cat_idx, category in enumerate(plan):
f.write(f"## {cat_idx + 1}. {category['category_name']}\n\n")
for task_idx, task in enumerate(category['tasks']):
marker = "- [x]" if task["status"] == "completed" else "- [ ]" if task[
"status"] == "pending" else "- [-]" # [-] for failed
f.write(f" {marker} {task['task_description']}\n")
f.write("\n")
logger.info(f"Hierarchical research plan saved to {plan_file}")
except Exception as e:
logger.error(f"Failed to save research plan to {plan_file}: {e}")
def _save_search_results_to_json(results: List[Dict[str, Any]], output_dir: str):
"""Appends or overwrites search results to a JSON file."""
search_file = os.path.join(output_dir, SEARCH_INFO_FILENAME)
try:
# Simple overwrite for now, could be append
with open(search_file, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
logger.info(f"Search results saved to {search_file}")
except Exception as e:
logger.error(f"Failed to save search results to {search_file}: {e}")
def _save_report_to_md(report: str, output_dir: Path):
"""Saves the final report to a markdown file."""
report_file = os.path.join(output_dir, REPORT_FILENAME)
try:
with open(report_file, "w", encoding="utf-8") as f:
f.write(report)
logger.info(f"Final report saved to {report_file}")
except Exception as e:
logger.error(f"Failed to save final report to {report_file}: {e}")
async def planning_node(state: DeepResearchState) -> Dict[str, Any]:
logger.info("--- Entering Planning Node ---")
if state.get("stop_requested"):
logger.info("Stop requested, skipping planning.")
return {"stop_requested": True}
llm = state["llm"]
topic = state["topic"]
existing_plan = state.get("research_plan")
output_dir = state["output_dir"]
if existing_plan and (
state.get("current_category_index", 0) > 0 or state.get("current_task_index_in_category", 0) > 0):
logger.info("Resuming with existing plan.")
_save_plan_to_md(existing_plan, output_dir) # Ensure it's saved initially
# current_category_index and current_task_index_in_category should be set by _load_previous_state
return {"research_plan": existing_plan}
logger.info(f"Generating new research plan for topic: {topic}")
prompt_text = f"""You are a meticulous research assistant. Your goal is to create a hierarchical research plan to thoroughly investigate the topic: "{topic}".
The plan should be structured into several main research categories. Each category should contain a list of specific, actionable research tasks or questions.
Format the output as a JSON list of objects. Each object represents a research category and should have:
1. "category_name": A string for the name of the research category.
2. "tasks": A list of strings, where each string is a specific research task for that category.
Example JSON Output:
[
{{
"category_name": "Understanding Core Concepts and Definitions",
"tasks": [
"Define the primary terminology associated with '{topic}'.",
"Identify the fundamental principles and theories underpinning '{topic}'."
]
}},
{{
"category_name": "Historical Development and Key Milestones",
"tasks": [
"Trace the historical evolution of '{topic}'.",
"Identify key figures, events, or breakthroughs in the development of '{topic}'."
]
}},
{{
"category_name": "Current State-of-the-Art and Applications",
"tasks": [
"Analyze the current advancements and prominent applications of '{topic}'.",
"Investigate ongoing research and active areas of development related to '{topic}'."
]
}},
{{
"category_name": "Challenges, Limitations, and Future Outlook",
"tasks": [
"Identify the major challenges and limitations currently facing '{topic}'.",
"Explore potential future trends, ethical considerations, and societal impacts of '{topic}'."
]
}}
]
Generate a plan with 3-10 categories, and 2-6 tasks per category for the topic: "{topic}" according to the complexity of the topic.
Ensure the output is a valid JSON array.
"""
messages = [
SystemMessage(content="You are a research planning assistant outputting JSON."),
HumanMessage(content=prompt_text)
]
try:
response = await llm.ainvoke(messages)
raw_content = response.content
# The LLM might wrap the JSON in backticks
if raw_content.strip().startswith("```json"):
raw_content = raw_content.strip()[7:-3].strip()
elif raw_content.strip().startswith("```"):
raw_content = raw_content.strip()[3:-3].strip()
logger.debug(f"LLM response for plan: {raw_content}")
parsed_plan_from_llm = json.loads(raw_content)
new_plan: List[ResearchCategoryItem] = []
for cat_idx, category_data in enumerate(parsed_plan_from_llm):
if not isinstance(category_data,
dict) or "category_name" not in category_data or "tasks" not in category_data:
logger.warning(f"Skipping invalid category data: {category_data}")
continue
tasks: List[ResearchTaskItem] = []
for task_idx, task_desc in enumerate(category_data["tasks"]):
if isinstance(task_desc, str):
tasks.append(
ResearchTaskItem(
task_description=task_desc,
status="pending",
queries=None,
result_summary=None,
)
)
else: # Sometimes LLM puts tasks as {"task": "description"}
if isinstance(task_desc, dict) and "task_description" in task_desc:
tasks.append(
ResearchTaskItem(
task_description=task_desc["task_description"],
status="pending",
queries=None,
result_summary=None,
)
)
elif isinstance(task_desc, dict) and "task" in task_desc: # common LLM mistake
tasks.append(
ResearchTaskItem(
task_description=task_desc["task"],
status="pending",
queries=None,
result_summary=None,
)
)
else:
logger.warning(
f"Skipping invalid task data: {task_desc} in category {category_data['category_name']}")
new_plan.append(
ResearchCategoryItem(
category_name=category_data["category_name"],
tasks=tasks,
)
)
if not new_plan:
logger.error("LLM failed to generate a valid plan structure from JSON.")
return {"error_message": "Failed to generate research plan structure."}
logger.info(f"Generated research plan with {len(new_plan)} categories.")
_save_plan_to_md(new_plan, output_dir) # Save the hierarchical plan
return {
"research_plan": new_plan,
"current_category_index": 0,
"current_task_index_in_category": 0,
"search_results": [],
}
except json.JSONDecodeError as e:
logger.error(f"Failed to parse JSON from LLM for plan: {e}. Response was: {raw_content}", exc_info=True)
return {"error_message": f"LLM generated invalid JSON for research plan: {e}"}
except Exception as e:
logger.error(f"Error during planning: {e}", exc_info=True)
return {"error_message": f"LLM Error during planning: {e}"}
async def research_execution_node(state: DeepResearchState) -> Dict[str, Any]:
logger.info("--- Entering Research Execution Node ---")
if state.get("stop_requested"):
logger.info("Stop requested, skipping research execution.")
return {
"stop_requested": True,
"current_category_index": state["current_category_index"],
"current_task_index_in_category": state["current_task_index_in_category"],
}
plan = state["research_plan"]
cat_idx = state["current_category_index"]
task_idx = state["current_task_index_in_category"]
llm = state["llm"]
tools = state["tools"]
output_dir = str(state["output_dir"])
task_id = state["task_id"] # For _AGENT_STOP_FLAGS
# This check should ideally be handled by `should_continue`
if not plan or cat_idx >= len(plan):
logger.info("Research plan complete or categories exhausted.")
return {} # should route to synthesis
current_category = plan[cat_idx]
if task_idx >= len(current_category["tasks"]):
logger.info(f"All tasks in category '{current_category['category_name']}' completed. Moving to next category.")
# This logic is now effectively handled by should_continue and the index updates below
# The next iteration will be caught by should_continue or this node with updated indices
return {
"current_category_index": cat_idx + 1,
"current_task_index_in_category": 0,
"messages": state["messages"] # Pass messages along
}
current_task = current_category["tasks"][task_idx]
if current_task["status"] == "completed":
logger.info(
f"Task '{current_task['task_description']}' in category '{current_category['category_name']}' already completed. Skipping.")
# Logic to find next task
next_task_idx = task_idx + 1
next_cat_idx = cat_idx
if next_task_idx >= len(current_category["tasks"]):
next_cat_idx += 1
next_task_idx = 0
return {
"current_category_index": next_cat_idx,
"current_task_index_in_category": next_task_idx,
"messages": state["messages"] # Pass messages along
}
logger.info(
f"Executing research task: '{current_task['task_description']}' (Category: '{current_category['category_name']}')"
)
llm_with_tools = llm.bind_tools(tools)
# Construct messages for LLM invocation
task_prompt_content = (
f"Current Research Category: {current_category['category_name']}\n"
f"Specific Task: {current_task['task_description']}\n\n"
"Please use the available tools, especially 'parallel_browser_search', to gather information for this specific task. "
"Provide focused search queries relevant ONLY to this task. "
"If you believe you have sufficient information from previous steps for this specific task, you can indicate that you are ready to summarize or that no further search is needed."
)
current_task_message_history = [
HumanMessage(content=task_prompt_content)
]
if not state["messages"]: # First actual execution message
invocation_messages = [
SystemMessage(
content="You are a research assistant executing one task of a research plan. Focus on the current task only."),
] + current_task_message_history
else:
invocation_messages = state["messages"] + current_task_message_history
try:
logger.info(f"Invoking LLM with tools for task: {current_task['task_description']}")
ai_response: BaseMessage = await llm_with_tools.ainvoke(invocation_messages)
logger.info("LLM invocation complete.")
tool_results = []
executed_tool_names = []
current_search_results = state.get("search_results", []) # Get existing search results
if not isinstance(ai_response, AIMessage) or not ai_response.tool_calls:
logger.warning(
f"LLM did not call any tool for task '{current_task['task_description']}'. Response: {ai_response.content[:100]}..."
)
current_task["status"] = "pending" # Or "completed_no_tool" if LLM explains it's done
current_task["result_summary"] = f"LLM did not use a tool. Response: {ai_response.content}"
current_task["current_category_index"] = cat_idx
current_task["current_task_index_in_category"] = task_idx
return current_task
# We still save the plan and advance.
else:
# Process tool calls
for tool_call in ai_response.tool_calls:
tool_name = tool_call.get("name")
tool_args = tool_call.get("args", {})
tool_call_id = tool_call.get("id")
logger.info(f"LLM requested tool call: {tool_name} with args: {tool_args}")
executed_tool_names.append(tool_name)
selected_tool = next((t for t in tools if t.name == tool_name), None)
if not selected_tool:
logger.error(f"LLM called tool '{tool_name}' which is not available.")
tool_results.append(
ToolMessage(content=f"Error: Tool '{tool_name}' not found.", tool_call_id=tool_call_id))
continue
try:
stop_event = _AGENT_STOP_FLAGS.get(task_id)
if stop_event and stop_event.is_set():
logger.info(f"Stop requested before executing tool: {tool_name}")
current_task["status"] = "pending" # Or a new "stopped" status
_save_plan_to_md(plan, output_dir)
return {"stop_requested": True, "research_plan": plan, "current_category_index": cat_idx,
"current_task_index_in_category": task_idx}
logger.info(f"Executing tool: {tool_name}")
tool_output = await selected_tool.ainvoke(tool_args)
logger.info(f"Tool '{tool_name}' executed successfully.")
if tool_name == "parallel_browser_search":
current_search_results.extend(tool_output) # tool_output is List[Dict]
else: # For other tools, we might need specific handling or just log
logger.info(f"Result from tool '{tool_name}': {str(tool_output)[:200]}...")
# Storing non-browser results might need a different structure or key in search_results
current_search_results.append(
{"tool_name": tool_name, "args": tool_args, "output": str(tool_output),
"status": "completed"})
tool_results.append(ToolMessage(content=json.dumps(tool_output), tool_call_id=tool_call_id))
except Exception as e:
logger.error(f"Error executing tool '{tool_name}': {e}", exc_info=True)
tool_results.append(
ToolMessage(content=f"Error executing tool {tool_name}: {e}", tool_call_id=tool_call_id))
current_search_results.append(
{"tool_name": tool_name, "args": tool_args, "status": "failed", "error": str(e)})
# After processing all tool calls for this task
step_failed_tool_execution = any("Error:" in str(tr.content) for tr in tool_results)
# Consider a task successful if a browser search was attempted and didn't immediately error out during call
# The browser search itself returns status for each query.
browser_tool_attempted_successfully = "parallel_browser_search" in executed_tool_names and not step_failed_tool_execution
if step_failed_tool_execution:
current_task["status"] = "failed"
current_task[
"result_summary"] = f"Tool execution failed. Errors: {[tr.content for tr in tool_results if 'Error' in str(tr.content)]}"
elif executed_tool_names: # If any tool was called
current_task["status"] = "completed"
current_task["result_summary"] = f"Executed tool(s): {', '.join(executed_tool_names)}."
# TODO: Could ask LLM to summarize the tool_results for this task if needed, rather than just listing tools.
else: # No tool calls but AI response had .tool_calls structure (empty)
current_task["status"] = "failed" # Or a more specific status
current_task["result_summary"] = "LLM prepared for tool call but provided no tools."
# Save progress
_save_plan_to_md(plan, output_dir)
_save_search_results_to_json(current_search_results, output_dir)
# Determine next indices
next_task_idx = task_idx + 1
next_cat_idx = cat_idx
if next_task_idx >= len(current_category["tasks"]):
next_cat_idx += 1
next_task_idx = 0
updated_messages = state["messages"] + current_task_message_history + [ai_response] + tool_results
return {
"research_plan": plan,
"search_results": current_search_results,
"current_category_index": next_cat_idx,
"current_task_index_in_category": next_task_idx,
"messages": updated_messages,
}
except Exception as e:
logger.error(f"Unhandled error during research execution for task '{current_task['task_description']}': {e}",
exc_info=True)
current_task["status"] = "failed"
_save_plan_to_md(plan, output_dir)
# Determine next indices even on error to attempt to move on
next_task_idx = task_idx + 1
next_cat_idx = cat_idx
if next_task_idx >= len(current_category["tasks"]):
next_cat_idx += 1
next_task_idx = 0
return {
"research_plan": plan,
"current_category_index": next_cat_idx,
"current_task_index_in_category": next_task_idx,
"error_message": f"Core Execution Error on task '{current_task['task_description']}': {e}",
"messages": state["messages"] + current_task_message_history # Preserve messages up to error
}
async def synthesis_node(state: DeepResearchState) -> Dict[str, Any]:
"""Synthesizes the final report from the collected search results."""
logger.info("--- Entering Synthesis Node ---")
if state.get("stop_requested"):
logger.info("Stop requested, skipping synthesis.")
return {"stop_requested": True}
llm = state["llm"]
topic = state["topic"]
search_results = state.get("search_results", [])
output_dir = state["output_dir"]
plan = state["research_plan"] # Include plan for context
if not search_results:
logger.warning("No search results found to synthesize report.")
report = f"# Research Report: {topic}\n\nNo information was gathered during the research process."
_save_report_to_md(report, output_dir)
return {"final_report": report}
logger.info(
f"Synthesizing report from {len(search_results)} collected search result entries."
)
# Prepare context for the LLM
# Format search results nicely, maybe group by query or original plan step
formatted_results = ""
references = {}
ref_count = 1
for i, result_entry in enumerate(search_results):
query = result_entry.get("query", "Unknown Query") # From parallel_browser_search
tool_name = result_entry.get("tool_name") # From other tools
status = result_entry.get("status", "unknown")
result_data = result_entry.get("result") # From BrowserUseAgent's final_result
tool_output_str = result_entry.get("output") # From other tools
if tool_name == "parallel_browser_search" and status == "completed" and result_data:
# result_data is the summary from BrowserUseAgent
formatted_results += f'### Finding from Web Search Query: "{query}"\n'
formatted_results += f"- **Summary:**\n{result_data}\n" # result_data is already a summary string here
# If result_data contained title/URL, you'd format them here.
# The current BrowserUseAgent returns a string summary directly as 'final_data' in run_single_browser_task
formatted_results += "---\n"
elif tool_name != "parallel_browser_search" and status == "completed" and tool_output_str:
formatted_results += f'### Finding from Tool: "{tool_name}" (Args: {result_entry.get("args")})\n'
formatted_results += f"- **Output:**\n{tool_output_str}\n"
formatted_results += "---\n"
elif status == "failed":
error = result_entry.get("error")
q_or_t = f"Query: \"{query}\"" if query != "Unknown Query" else f"Tool: \"{tool_name}\""
formatted_results += f'### Failed {q_or_t}\n'
formatted_results += f"- **Error:** {error}\n"
formatted_results += "---\n"
# Prepare the research plan context
plan_summary = "\nResearch Plan Followed:\n"
for cat_idx, category in enumerate(plan):
plan_summary += f"\n#### Category {cat_idx + 1}: {category['category_name']}\n"
for task_idx, task in enumerate(category['tasks']):
marker = "[x]" if task["status"] == "completed" else "[ ]" if task["status"] == "pending" else "[-]"
plan_summary += f" - {marker} {task['task_description']}\n"
synthesis_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You are a professional researcher tasked with writing a comprehensive and well-structured report based on collected findings.
The report should address the research topic thoroughly, synthesizing the information gathered from various sources.
Structure the report logically:
1. Briefly introduce the topic and the report's scope (mentioning the research plan followed, including categories and tasks, is good).
2. Discuss the key findings, organizing them thematically, possibly aligning with the research categories. Analyze, compare, and contrast information.
3. Summarize the main points and offer concluding thoughts.
Ensure the tone is objective and professional.
If findings are contradictory or incomplete, acknowledge this.
""", # Removed citation part for simplicity for now, as browser agent returns summaries.
),
(
"human",
f"""
**Research Topic:** {topic}
{plan_summary}
**Collected Findings:**
```
{formatted_results}
```
Please generate the final research report in Markdown format based **only** on the information above.
""",
),
]
)
try:
response = await llm.ainvoke(
synthesis_prompt.format_prompt(
topic=topic,
plan_summary=plan_summary,
formatted_results=formatted_results,
).to_messages()
)
final_report_md = response.content
# Append the reference list automatically to the end of the generated markdown
if references:
report_references_section = "\n\n## References\n\n"
# Sort refs by ID for consistent output
sorted_refs = sorted(references.values(), key=lambda x: x["id"])
for ref in sorted_refs:
report_references_section += (
f"[{ref['id']}] {ref['title']} - {ref['url']}\n"
)
final_report_md += report_references_section
logger.info("Successfully synthesized the final report.")
_save_report_to_md(final_report_md, output_dir)
return {"final_report": final_report_md}
except Exception as e:
logger.error(f"Error during report synthesis: {e}", exc_info=True)
return {"error_message": f"LLM Error during synthesis: {e}"}
# --- Langgraph Edges and Conditional Logic ---
def should_continue(state: DeepResearchState) -> str:
logger.info("--- Evaluating Condition: Should Continue? ---")
if state.get("stop_requested"):
logger.info("Stop requested, routing to END.")
return "end_run"
if state.get("error_message") and "Core Execution Error" in state["error_message"]: # Critical error in node
logger.warning(f"Critical error detected: {state['error_message']}. Routing to END.")
return "end_run"
plan = state.get("research_plan")
cat_idx = state.get("current_category_index", 0)
task_idx = state.get("current_task_index_in_category", 0) # This is the *next* task to check
if not plan:
logger.warning("No research plan found. Routing to END.")
return "end_run"
# Check if the current indices point to a valid pending task
if cat_idx < len(plan):
current_category = plan[cat_idx]
if task_idx < len(current_category["tasks"]):
# We are trying to execute the task at plan[cat_idx]["tasks"][task_idx]
# The research_execution_node will handle if it's already completed.
logger.info(
f"Plan has potential pending tasks (next up: Category {cat_idx}, Task {task_idx}). Routing to Research Execution."
)
return "execute_research"
else: # task_idx is out of bounds for current category, means we need to check next category
if cat_idx + 1 < len(plan): # If there is a next category
logger.info(
f"Finished tasks in category {cat_idx}. Moving to category {cat_idx + 1}. Routing to Research Execution."
)
# research_execution_node will update state to {current_category_index: cat_idx + 1, current_task_index_in_category: 0}
# Or rather, the previous execution node already set these indices to the start of the next category.
return "execute_research"
# If we've gone through all categories and tasks (cat_idx >= len(plan))
logger.info("All plan categories and tasks processed or current indices are out of bounds. Routing to Synthesis.")
return "synthesize_report"
# --- DeepSearchAgent Class ---
class DeepResearchAgent:
def __init__(
self,
llm: Any,
browser_config: Dict[str, Any],
mcp_server_config: Optional[Dict[str, Any]] = None,
):
"""
Initializes the DeepSearchAgent.
Args:
llm: The Langchain compatible language model instance.
browser_config: Configuration dictionary for the BrowserUseAgent tool.
Example: {"headless": True, "window_width": 1280, ...}
mcp_server_config: Optional configuration for the MCP client.
"""
self.llm = llm
self.browser_config = browser_config
self.mcp_server_config = mcp_server_config
self.mcp_client = None
self.stopped = False
self.graph = self._compile_graph()
self.current_task_id: Optional[str] = None
self.stop_event: Optional[threading.Event] = None
self.runner: Optional[asyncio.Task] = None # To hold the asyncio task for run
async def _setup_tools(
self, task_id: str, stop_event: threading.Event, max_parallel_browsers: int = 1
) -> List[Tool]:
"""Sets up the basic tools (File I/O) and optional MCP tools."""
tools = [
WriteFileTool(),
ReadFileTool(),
ListDirectoryTool(),
] # Basic file operations
browser_use_tool = create_browser_search_tool(
llm=self.llm,
browser_config=self.browser_config,
task_id=task_id,
stop_event=stop_event,
max_parallel_browsers=max_parallel_browsers,
)
tools += [browser_use_tool]
# Add MCP tools if config is provided
if self.mcp_server_config:
try:
logger.info("Setting up MCP client and tools...")
if not self.mcp_client:
self.mcp_client = await setup_mcp_client_and_tools(
self.mcp_server_config
)
mcp_tools = self.mcp_client.get_tools()
logger.info(f"Loaded {len(mcp_tools)} MCP tools.")
tools.extend(mcp_tools)
except Exception as e:
logger.error(f"Failed to set up MCP tools: {e}", exc_info=True)
elif self.mcp_server_config:
logger.warning(
"MCP server config provided, but setup function unavailable."
)
tools_map = {tool.name: tool for tool in tools}
return tools_map.values()
async def close_mcp_client(self):
if self.mcp_client:
await self.mcp_client.__aexit__(None, None, None)
self.mcp_client = None
def _compile_graph(self) -> StateGraph:
"""Compiles the Langgraph state machine."""
workflow = StateGraph(DeepResearchState)
# Add nodes
workflow.add_node("plan_research", planning_node)
workflow.add_node("execute_research", research_execution_node)
workflow.add_node("synthesize_report", synthesis_node)
workflow.add_node(
"end_run", lambda state: logger.info("--- Reached End Run Node ---") or {}
) # Simple end node
# Define edges
workflow.set_entry_point("plan_research")
workflow.add_edge(
"plan_research", "execute_research"
) # Always execute after planning
# Conditional edge after execution
workflow.add_conditional_edges(
"execute_research",
should_continue,
{
"execute_research": "execute_research", # Loop back if more steps
"synthesize_report": "synthesize_report", # Move to synthesis if done
"end_run": "end_run", # End if stop requested or error
},
)
workflow.add_edge("synthesize_report", "end_run") # End after synthesis
app = workflow.compile()
return app
async def run(
self,
topic: str,
task_id: Optional[str] = None,
save_dir: str = "./tmp/deep_research",
max_parallel_browsers: int = 1,
) -> Dict[str, Any]:
"""
Starts the deep research process (Async Generator Version).
Args:
topic: The research topic.
task_id: Optional existing task ID to resume. If None, a new ID is generated.
Yields:
Intermediate state updates or messages during execution.
"""
if self.runner and not self.runner.done():
logger.warning(
"Agent is already running. Please stop the current task first."
)
# Return an error status instead of yielding
return {
"status": "error",
"message": "Agent already running.",
"task_id": self.current_task_id,
}
self.current_task_id = task_id if task_id else str(uuid.uuid4())
output_dir = os.path.join(save_dir, self.current_task_id)
os.makedirs(output_dir, exist_ok=True)
logger.info(
f"[AsyncGen] Starting research task ID: {self.current_task_id} for topic: '{topic}'"
)
logger.info(f"[AsyncGen] Output directory: {output_dir}")
self.stop_event = threading.Event()
_AGENT_STOP_FLAGS[self.current_task_id] = self.stop_event
agent_tools = await self._setup_tools(
self.current_task_id, self.stop_event, max_parallel_browsers
)
initial_state: DeepResearchState = {
"task_id": self.current_task_id,
"topic": topic,
"research_plan": [],
"search_results": [],
"messages": [],
"llm": self.llm,
"tools": agent_tools,
"output_dir": Path(output_dir),
"browser_config": self.browser_config,
"final_report": None,
"current_category_index": 0,
"current_task_index_in_category": 0,
"stop_requested": False,
"error_message": None,
}
if task_id:
logger.info(f"Attempting to resume task {task_id}...")
loaded_state = _load_previous_state(task_id, output_dir)
initial_state.update(loaded_state)
if loaded_state.get("research_plan"):
logger.info(
f"Resuming with {len(loaded_state['research_plan'])} plan categories "
f"and {len(loaded_state.get('search_results', []))} existing results. "
f"Next task: Cat {initial_state['current_category_index']}, Task {initial_state['current_task_index_in_category']}"
)
initial_state["topic"] = (
topic # Allow overriding topic even when resuming? Or use stored topic? Let's use new one.
)
else:
logger.warning(
f"Resume requested for {task_id}, but no previous plan found. Starting fresh."
)
# --- Execute Graph using ainvoke ---
final_state = None
status = "unknown"
message = None
try:
logger.info(f"Invoking graph execution for task {self.current_task_id}...")
self.runner = asyncio.create_task(self.graph.ainvoke(initial_state))
final_state = await self.runner
logger.info(f"Graph execution finished for task {self.current_task_id}.")
# Determine status based on final state
if self.stop_event and self.stop_event.is_set():
status = "stopped"
message = "Research process was stopped by request."
logger.info(message)
elif final_state and final_state.get("error_message"):
status = "error"
message = final_state["error_message"]
logger.error(f"Graph execution completed with error: {message}")
elif final_state and final_state.get("final_report"):
status = "completed"
message = "Research process completed successfully."
logger.info(message)
else:
# If it ends without error/report (e.g., empty plan, stopped before synthesis)
status = "finished_incomplete"
message = "Research process finished, but may be incomplete (no final report generated)."
logger.warning(message)
except asyncio.CancelledError:
status = "cancelled"
message = f"Agent run task cancelled for {self.current_task_id}."
logger.info(message)
# final_state will remain None or the state before cancellation if checkpointing was used
except Exception as e:
status = "error"
message = f"Unhandled error during graph execution for {self.current_task_id}: {e}"
logger.error(message, exc_info=True)
# final_state will remain None or the state before the error
finally:
logger.info(f"Cleaning up resources for task {self.current_task_id}")
task_id_to_clean = self.current_task_id
self.stop_event = None
self.current_task_id = None
self.runner = None # Mark runner as finished
if self.mcp_client:
await self.mcp_client.__aexit__(None, None, None)
# Return a result dictionary including the status and the final state if available
return {
"status": status,
"message": message,
"task_id": task_id_to_clean, # Use the stored task_id
"final_state": final_state
if final_state
else {}, # Return the final state dict
}
async def _stop_lingering_browsers(self, task_id):
"""Attempts to stop any BrowserUseAgent instances associated with the task_id."""
keys_to_stop = [
key for key in _BROWSER_AGENT_INSTANCES if key.startswith(f"{task_id}_")
]
if not keys_to_stop:
return
logger.warning(
f"Found {len(keys_to_stop)} potentially lingering browser agents for task {task_id}. Attempting stop..."
)
for key in keys_to_stop:
agent_instance = _BROWSER_AGENT_INSTANCES.get(key)
try:
if agent_instance:
# Assuming BU agent has an async stop method
await agent_instance.stop()
logger.info(f"Called stop() on browser agent instance {key}")
except Exception as e:
logger.error(
f"Error calling stop() on browser agent instance {key}: {e}"
)
async def stop(self):
"""Signals the currently running agent task to stop."""
if not self.current_task_id or not self.stop_event:
logger.info("No agent task is currently running.")
return
logger.info(f"Stop requested for task ID: {self.current_task_id}")
self.stop_event.set() # Signal the stop event
self.stopped = True
await self._stop_lingering_browsers(self.current_task_id)
def close(self):
self.stopped = False
|