Spaces:
Runtime error
Runtime error
File size: 17,388 Bytes
ad54d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import cv2
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import List
from itertools import chain
from transformers import SegformerForSemanticSegmentation,Mask2FormerForUniversalSegmentation
class EncoderDecoder(nn.Module):
def __init__(
self,
encoder,
decoder,
prefix=nn.Conv2d(3, 3, kernel_size=3, padding=1, bias=True),
):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.prefix = prefix
def forward(self, x):
if self.prefix is not None:
x = self.prefix(x)
x = self.encoder(x)["hidden_states"] #transformers
return self.decoder(x)
def conv2d_relu(input_filters,output_filters,kernel_size=3, bias=True):
return nn.Sequential(
nn.Conv2d(input_filters, output_filters, kernel_size=kernel_size, padding=kernel_size//2, bias=bias),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm2d(output_filters)
)
def up_and_add(x, y):
return F.interpolate(x, size=(y.size(2), y.size(3)), mode='bilinear', align_corners=True) + y
class FPN_fuse(nn.Module):
def __init__(self, feature_channels=[256, 512, 1024, 2048], fpn_out=256):
super(FPN_fuse, self).__init__()
assert feature_channels[0] == fpn_out
self.conv1x1 = nn.ModuleList([nn.Conv2d(ft_size, fpn_out, kernel_size=1)
for ft_size in feature_channels[1:]])
self.smooth_conv = nn.ModuleList([nn.Conv2d(fpn_out, fpn_out, kernel_size=3, padding=1)]
* (len(feature_channels)-1))
self.conv_fusion = nn.Sequential(
nn.Conv2d(2*fpn_out, fpn_out, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(fpn_out),
nn.ReLU(inplace=True),
)
def forward(self, features):
features[:-1] = [conv1x1(feature) for feature, conv1x1 in zip(features[:-1], self.conv1x1)]##
feature=up_and_add(self.smooth_conv[0](features[0]),features[1])
feature=up_and_add(self.smooth_conv[1](feature),features[2])
feature=up_and_add(self.smooth_conv[2](feature),features[3])
H, W = features[-1].size(2), features[-1].size(3)
x = [feature,features[-1]]
x = [F.interpolate(x_el, size=(H, W), mode='bilinear', align_corners=True) for x_el in x]
x = self.conv_fusion(torch.cat(x, dim=1))
#x = F.interpolate(x, size=(H*4, W*4), mode='bilinear', align_corners=True)
return x
class PSPModule(nn.Module):
# In the original inmplementation they use precise RoI pooling
# Instead of using adaptative average pooling
def __init__(self, in_channels, bin_sizes=[1, 2, 4, 6]):
super(PSPModule, self).__init__()
out_channels = in_channels // len(bin_sizes)
self.stages = nn.ModuleList([self._make_stages(in_channels, out_channels, b_s)
for b_s in bin_sizes])
self.bottleneck = nn.Sequential(
nn.Conv2d(in_channels+(out_channels * len(bin_sizes)), in_channels,
kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Dropout2d(0.1)
)
def _make_stages(self, in_channels, out_channels, bin_sz):
prior = nn.AdaptiveAvgPool2d(output_size=bin_sz)
conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
bn = nn.BatchNorm2d(out_channels)
relu = nn.ReLU(inplace=True)
return nn.Sequential(prior, conv, bn, relu)
def forward(self, features):
h, w = features.size()[2], features.size()[3]
pyramids = [features]
pyramids.extend([F.interpolate(stage(features), size=(h, w), mode='bilinear',
align_corners=True) for stage in self.stages])
output = self.bottleneck(torch.cat(pyramids, dim=1))
return output
class UperNet_swin(nn.Module):
# Implementing only the object path
def __init__(self, backbone,pretrained=True):
super(UperNet_swin, self).__init__()
self.backbone = backbone
feature_channels = [192,384,768,768]
self.PPN = PSPModule(feature_channels[-1])
self.FPN = FPN_fuse(feature_channels, fpn_out=feature_channels[0])
self.head = nn.Conv2d(feature_channels[0], 1, kernel_size=3, padding=1)
def forward(self, x):
input_size = (x.size()[2], x.size()[3])
features = self.backbone(x)["hidden_states"]
features[-1] = self.PPN(features[-1])
x = self.head(self.FPN(features))
x = F.interpolate(x, size=input_size, mode='bilinear')
return x
def get_backbone_params(self):
return self.backbone.parameters()
def get_decoder_params(self):
return chain(self.PPN.parameters(), self.FPN.parameters(), self.head.parameters())
class UnetDecoder(nn.Module):
def __init__(
self,
encoder_channels= (3,192,384,768,768),
decoder_channels=(512,256,128,64),
n_blocks=4,
use_batchnorm=True,
attention_type=None,
center=False,
):
super().__init__()
if n_blocks != len(decoder_channels):
raise ValueError(
"Model depth is {}, but you provide `decoder_channels` for {} blocks.".format(
n_blocks, len(decoder_channels)
)
)
# remove first skip with same spatial resolution
encoder_channels = encoder_channels[1:]
# reverse channels to start from head of encoder
encoder_channels = encoder_channels[::-1]
# computing blocks input and output channels
head_channels = encoder_channels[0]
in_channels = [head_channels] + list(decoder_channels[:-1])
skip_channels = list(encoder_channels[1:]) + [0]
out_channels = decoder_channels
if center:
self.center = CenterBlock(head_channels, head_channels, use_batchnorm=use_batchnorm)
else:
self.center = nn.Identity()
# combine decoder keyword arguments
kwargs = dict(use_batchnorm=use_batchnorm, attention_type=attention_type)
blocks = [
DecoderBlock(in_ch, skip_ch, out_ch, **kwargs)
for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels)
]
self.blocks = nn.ModuleList(blocks)
upscale_factor=4
self.matting_head = nn.Sequential(
nn.Conv2d(64,1, kernel_size=3, padding=1),
nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=upscale_factor),
)
def preprocess_features(self,x):
features=[]
for out_tensor in x:
bs,n,f=out_tensor.size()
h = int(n**0.5)
feature = out_tensor.view(-1,h,h,f).permute(0, 3, 1, 2).contiguous()
features.append(feature)
return features
def forward(self, features):
features = features[1:] # remove first skip with same spatial resolution
features = features[::-1] # reverse channels to start from head of encoder
features = self.preprocess_features(features)
head = features[0]
skips = features[1:]
x = self.center(head)
for i, decoder_block in enumerate(self.blocks):
skip = skips[i] if i < len(skips) else None
x = decoder_block(x, skip)
#y_i = self.upsample1(y_i)
#hypercol = torch.cat([y0,y1,y2,y3,y4], dim=1)
x = self.matting_head(x)
x=1-nn.ReLU()(1-x)
return x
class SegmentationHead(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1):
conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2)
upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity()
super().__init__(conv2d, upsampling)
class DecoderBlock(nn.Module):
def __init__(
self,
in_channels,
skip_channels,
out_channels,
use_batchnorm=True,
attention_type=None,
):
super().__init__()
self.conv1 = conv2d_relu(
in_channels + skip_channels,
out_channels,
kernel_size=3
)
self.conv2 = conv2d_relu(
out_channels,
out_channels,
kernel_size=3,
)
self.in_channels=in_channels
self.out_channels = out_channels
self.skip_channels = skip_channels
def forward(self, x, skip=None):
if skip is None:
x = F.interpolate(x, scale_factor=2, mode="nearest")
else:
if x.shape[-1]!=skip.shape[-1]:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if skip is not None:
#print(x.shape,skip.shape)
x = torch.cat([x, skip], dim=1)
x = self.conv1(x)
x = self.conv2(x)
return x
class CenterBlock(nn.Sequential):
def __init__(self, in_channels, out_channels):
conv1 = conv2d_relu(
in_channels,
out_channels,
kernel_size=3,
)
conv2 = conv2d_relu(
out_channels,
out_channels,
kernel_size=3,
)
super().__init__(conv1, conv2)
class SegForm(nn.Module):
def __init__(self):
super(SegForm, self).__init__()
# configuration = SegformerConfig.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
# configuration.num_labels = 1 ## set output as 1
# self.model = SegformerForSemanticSegmentation(config=configuration)
self.model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0", num_labels=1, ignore_mismatched_sizes=True
)
def forward(self, image):
img_segs = self.model(image)
upsampled_logits = nn.functional.interpolate(img_segs.logits,
scale_factor=4,
mode='nearest',
)
return upsampled_logits
class MaskForm(nn.Module):
def __init__(self):
super(MaskForm, self).__init__()
# configuration = SegformerConfig.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
# configuration.num_labels = 1 ## set output as 1
self.fpn = FPN_fuse(feature_channels=[256, 256, 256, 256],fpn_out=256)
self.pixel_decoder = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-tiny-coco-instance").base_model.pixel_level_module
self.fgf = FastGuidedFilter()
self.conv = nn.Conv2d(256,1,kernel_size=3,padding=1)
# self.mean = torch.Tensor([0.43216, 0.394666, 0.37645]).float().view(-1, 1, 1)
# self.register_buffer('image_net_mean', self.mean)
# self.std = torch.Tensor([0.22803, 0.22145, 0.216989]).float().view(-1, 1, 1)
# self.register_buffer('image_net_std', self.std)
def forward(self, image, normalize=False):
# if normalize:
# image.sub_(self.get_buffer("image_net_mean")).div_(self.get_buffer("image_net_std"))
decoder_out = self.pixel_decoder(image)
decoder_states=list(decoder_out.decoder_hidden_states)
decoder_states.append(decoder_out.decoder_last_hidden_state)
out_pure=self.fpn(decoder_states)
image_lr=nn.functional.interpolate(image.mean(1, keepdim=True),
scale_factor=0.25,
mode='bicubic',
align_corners=True
)
out = self.conv(out_pure)
out = self.fgf(image_lr,out,image.mean(1, keepdim=True))#.clip(0,1)
# out = nn.Sigmoid()(out)
# out = nn.functional.interpolate(out,
# scale_factor=4,
# mode='bicubic',
# align_corners=True
# )
return torch.sigmoid(out)
def get_training_params(self):
return list(self.fpn.parameters())+list(self.conv.parameters())#+list(self.fgf.parameters())
class GuidedFilter(nn.Module):
def __init__(self, r, eps=1e-8):
super(GuidedFilter, self).__init__()
self.r = r
self.eps = eps
self.boxfilter = BoxFilter(r)
def forward(self, x, y):
n_x, c_x, h_x, w_x = x.size()
n_y, c_y, h_y, w_y = y.size()
assert n_x == n_y
assert c_x == 1 or c_x == c_y
assert h_x == h_y and w_x == w_y
assert h_x > 2 * self.r + 1 and w_x > 2 * self.r + 1
# N
N = self.boxfilter((x.data.new().resize_((1, 1, h_x, w_x)).fill_(1.0)))
# mean_x
mean_x = self.boxfilter(x) / N
# mean_y
mean_y = self.boxfilter(y) / N
# cov_xy
cov_xy = self.boxfilter(x * y) / N - mean_x * mean_y
# var_x
var_x = self.boxfilter(x * x) / N - mean_x * mean_x
# A
A = cov_xy / (var_x + self.eps)
# b
b = mean_y - A * mean_x
# mean_A; mean_b
mean_A = self.boxfilter(A) / N
mean_b = self.boxfilter(b) / N
return mean_A * x + mean_b
class FastGuidedFilter(nn.Module):
def __init__(self, r=1, eps=1e-8):
super(FastGuidedFilter, self).__init__()
self.r = r
self.eps = eps
self.boxfilter = BoxFilter(r)
def forward(self, lr_x, lr_y, hr_x):
n_lrx, c_lrx, h_lrx, w_lrx = lr_x.size()
n_lry, c_lry, h_lry, w_lry = lr_y.size()
n_hrx, c_hrx, h_hrx, w_hrx = hr_x.size()
assert n_lrx == n_lry and n_lry == n_hrx
assert c_lrx == c_hrx and (c_lrx == 1 or c_lrx == c_lry)
assert h_lrx == h_lry and w_lrx == w_lry
assert h_lrx > 2*self.r+1 and w_lrx > 2*self.r+1
## N
N = self.boxfilter(lr_x.new().resize_((1, 1, h_lrx, w_lrx)).fill_(1.0))
## mean_x
mean_x = self.boxfilter(lr_x) / N
## mean_y
mean_y = self.boxfilter(lr_y) / N
## cov_xy
cov_xy = self.boxfilter(lr_x * lr_y) / N - mean_x * mean_y
## var_x
var_x = self.boxfilter(lr_x * lr_x) / N - mean_x * mean_x
## A
A = cov_xy / (var_x + self.eps)
## b
b = mean_y - A * mean_x
## mean_A; mean_b
mean_A = F.interpolate(A, (h_hrx, w_hrx), mode='bilinear', align_corners=True)
mean_b = F.interpolate(b, (h_hrx, w_hrx), mode='bilinear', align_corners=True)
return mean_A*hr_x+mean_b
class DeepGuidedFilterRefiner(nn.Module):
def __init__(self, hid_channels=16):
super().__init__()
self.box_filter = nn.Conv2d(4, 4, kernel_size=3, padding=1, bias=False, groups=4)
self.box_filter.weight.data[...] = 1 / 9
self.conv = nn.Sequential(
nn.Conv2d(4 * 2 + hid_channels, hid_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(hid_channels),
nn.ReLU(True),
nn.Conv2d(hid_channels, hid_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(hid_channels),
nn.ReLU(True),
nn.Conv2d(hid_channels, 4, kernel_size=1, bias=True)
)
def forward(self, fine_src, base_src, base_fgr, base_pha, base_hid):
fine_x = torch.cat([fine_src, fine_src.mean(1, keepdim=True)], dim=1)
base_x = torch.cat([base_src, base_src.mean(1, keepdim=True)], dim=1)
base_y = torch.cat([base_fgr, base_pha], dim=1)
mean_x = self.box_filter(base_x)
mean_y = self.box_filter(base_y)
cov_xy = self.box_filter(base_x * base_y) - mean_x * mean_y
var_x = self.box_filter(base_x * base_x) - mean_x * mean_x
A = self.conv(torch.cat([cov_xy, var_x, base_hid], dim=1))
b = mean_y - A * mean_x
H, W = fine_src.shape[2:]
A = F.interpolate(A, (H, W), mode='bilinear', align_corners=False)
b = F.interpolate(b, (H, W), mode='bilinear', align_corners=False)
out = A * fine_x + b
fgr, pha = out.split([3, 1], dim=1)
return fgr, pha
def diff_x(input, r):
assert input.dim() == 4
left = input[:, :, r:2 * r + 1]
middle = input[:, :, 2 * r + 1: ] - input[:, :, :-2 * r - 1]
right = input[:, :, -1: ] - input[:, :, -2 * r - 1: -r - 1]
output = torch.cat([left, middle, right], dim=2)
return output
def diff_y(input, r):
assert input.dim() == 4
left = input[:, :, :, r:2 * r + 1]
middle = input[:, :, :, 2 * r + 1: ] - input[:, :, :, :-2 * r - 1]
right = input[:, :, :, -1: ] - input[:, :, :, -2 * r - 1: -r - 1]
output = torch.cat([left, middle, right], dim=3)
return output
class BoxFilter(nn.Module):
def __init__(self, r):
super(BoxFilter, self).__init__()
self.r = r
def forward(self, x):
assert x.dim() == 4
return diff_y(diff_x(x.cumsum(dim=2), self.r).cumsum(dim=3), self.r)
if __name__ == '__main__':
model = MaskForm().cuda()
out=model(torch.randn(1,3,640,480).cuda())
print(out.shape)
|