File size: 39,100 Bytes
ad54d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0f2c0
8029b4a
ad54d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8029b4a
ad54d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ddd609
ad54d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
#modified from Github repo: https://github.com/JizhiziLi/P3M
#added inference code for other networks


import torch
import cv2
import argparse
import numpy as np
from tqdm import tqdm
from PIL import Image
from skimage.transform import resize
from torchvision import transforms,models
import os 
from models import *
import torch.nn.functional as F
import torch
import torch.nn as nn
import math
from torch.autograd import Variable
import torch.nn.functional as fnn
import glob
import tqdm
from torch.autograd import Variable
from typing import Type, Any, Callable, Union, List, Optional
import logging 
import time
from omegaconf import OmegaConf
config = OmegaConf.load("base.yaml")
device = "cpu"

def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)
class TFI(nn.Module):
    expansion = 1
    def __init__(self, planes,stride=1):
        super(TFI, self).__init__()
        middle_planes = int(planes/2)
        self.transform = conv1x1(planes, middle_planes)
        self.conv1 = conv3x3(middle_planes*3, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.stride = stride
    def forward(self, input_s_guidance, input_m_decoder, input_m_encoder):
        input_s_guidance_transform = self.transform(input_s_guidance)
        input_m_decoder_transform = self.transform(input_m_decoder)
        input_m_encoder_transform = self.transform(input_m_encoder)
        x = torch.cat((input_s_guidance_transform,input_m_decoder_transform,input_m_encoder_transform),1)
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        return out
class SBFI(nn.Module):
    def __init__(self, planes,stride=1):
        super(SBFI, self).__init__()
        self.stride = stride
        self.transform1 = conv1x1(planes, int(planes/2))
        self.transform2 = conv1x1(64, int(planes/2))
        self.maxpool = nn.MaxPool2d(2, stride=stride)
        self.conv1 = conv3x3(planes, planes, 1)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, input_m_decoder,e0):
        input_m_decoder_transform = self.transform1(input_m_decoder)
        e0_maxpool = self.maxpool(e0)
        e0_transform = self.transform2(e0_maxpool)
        x = torch.cat((input_m_decoder_transform,e0_transform),1)
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = out+input_m_decoder
        return out
class DBFI(nn.Module):
    def __init__(self, planes,stride=1):
        super(DBFI, self).__init__()
        self.stride = stride
        self.transform1 = conv1x1(planes, int(planes/2))
        self.transform2 = conv1x1(512, int(planes/2))
        self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear')
        self.conv1 = conv3x3(planes, planes, 1)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, 3, 1)
        self.upsample2 = nn.Upsample(scale_factor=int(32/stride), mode='bilinear')
    def forward(self, input_s_decoder,e4):
        input_s_decoder_transform = self.transform1(input_s_decoder)
        e4_transform = self.transform2(e4)
        e4_upsample = self.upsample(e4_transform)
        x = torch.cat((input_s_decoder_transform,e4_upsample),1)
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = out+input_s_decoder
        out_side = self.conv2(out)
        out_side = self.upsample2(out_side)
        return out, out_side
class P3mNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.resnet = resnet34_mp()
        ############################
        ### Encoder part - RESNETMP
        ############################
        self.encoder0 = nn.Sequential(
            self.resnet.conv1,
            self.resnet.bn1,
            self.resnet.relu,
            )
        self.mp0 = self.resnet.maxpool1
        self.encoder1 = nn.Sequential(
            self.resnet.layer1)
        self.mp1 = self.resnet.maxpool2
        self.encoder2 = self.resnet.layer2
        self.mp2 = self.resnet.maxpool3
        self.encoder3 = self.resnet.layer3
        self.mp3 = self.resnet.maxpool4
        self.encoder4 = self.resnet.layer4
        self.mp4 = self.resnet.maxpool5

        self.tfi_3 = TFI(256)
        self.tfi_2 = TFI(128)
        self.tfi_1 = TFI(64)
        self.tfi_0 = TFI(64)

        self.sbfi_2 = SBFI(128, 8)
        self.sbfi_1 = SBFI(64, 4)
        self.sbfi_0 = SBFI(64, 2)

        self.dbfi_2 = DBFI(128, 4)
        self.dbfi_1 = DBFI(64, 8)
        self.dbfi_0 = DBFI(64, 16)

        ##########################
        ### Decoder part - GLOBAL
        ##########################
        self.decoder4_g = nn.Sequential(
            nn.Conv2d(512,512,3,padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512,512,3,padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512,256,3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Upsample(scale_factor=2, mode='bilinear') )
        self.decoder3_g = nn.Sequential(
            nn.Conv2d(256,256,3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256,256,3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256,128,3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Upsample(scale_factor=2, mode='bilinear') )
        self.decoder2_g = nn.Sequential(
            nn.Conv2d(128,128,3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128,128,3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Upsample(scale_factor=2, mode='bilinear'))
        self.decoder1_g = nn.Sequential(
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Upsample(scale_factor=2, mode='bilinear'))
        self.decoder0_g = nn.Sequential(
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64,3,3,padding=1),
            nn.Upsample(scale_factor=2, mode='bilinear'))

        ##########################
        ### Decoder part - LOCAL
        ##########################
        self.decoder4_l = nn.Sequential(
            nn.Conv2d(512,512,3,padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512,512,3,padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512,256,3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True))
        self.decoder3_l = nn.Sequential(
            nn.Conv2d(256,256,3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256,256,3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256,128,3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True))
        self.decoder2_l = nn.Sequential(
            nn.Conv2d(128,128,3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128,128,3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True))
        self.decoder1_l = nn.Sequential(
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True))
        self.decoder0_l = nn.Sequential(
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64,64,3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True))
        self.decoder_final_l = nn.Conv2d(64,1,3,padding=1)

        
    def forward(self, input):
        ##########################
        ### Encoder part - RESNET
        ##########################
        e0 = self.encoder0(input)
        e0p, id0 = self.mp0(e0)
        e1p, id1 = self.mp1(e0p)
        e1 = self.encoder1(e1p)
        e2p, id2 = self.mp2(e1)
        e2 = self.encoder2(e2p)
        e3p, id3 = self.mp3(e2)
        e3 = self.encoder3(e3p)
        e4p, id4 = self.mp4(e3)
        e4 = self.encoder4(e4p)
        ###########################
        ### Decoder part - Global
        ###########################
        d4_g = self.decoder4_g(e4)
        d3_g = self.decoder3_g(d4_g)
        d2_g, global_sigmoid_side2 = self.dbfi_2(d3_g, e4)
        d2_g = self.decoder2_g(d2_g)
        d1_g, global_sigmoid_side1 = self.dbfi_1(d2_g, e4)
        d1_g = self.decoder1_g(d1_g)
        d0_g, global_sigmoid_side0 = self.dbfi_0(d1_g, e4)
        d0_g = self.decoder0_g(d0_g)
        global_sigmoid = d0_g
        ###########################
        ### Decoder part - Local
        ###########################
        d4_l = self.decoder4_l(e4)
        d4_l = F.max_unpool2d(d4_l, id4, kernel_size=2, stride=2)
        d3_l = self.tfi_3(d4_g, d4_l, e3)
        d3_l = self.decoder3_l(d3_l)
        d3_l = F.max_unpool2d(d3_l, id3, kernel_size=2, stride=2)
        d2_l = self.tfi_2(d3_g, d3_l, e2)
        d2_l = self.sbfi_2(d2_l, e0)
        d2_l = self.decoder2_l(d2_l)
        d2_l  = F.max_unpool2d(d2_l, id2, kernel_size=2, stride=2)
        d1_l = self.tfi_1(d2_g, d2_l, e1)
        d1_l = self.sbfi_1(d1_l, e0)
        d1_l = self.decoder1_l(d1_l)
        d1_l  = F.max_unpool2d(d1_l, id1, kernel_size=2, stride=2)
        d0_l = self.tfi_0(d1_g, d1_l, e0p)
        d0_l = self.sbfi_0(d0_l, e0)
        d0_l = self.decoder0_l(d0_l)
        d0_l  = F.max_unpool2d(d0_l, id0, kernel_size=2, stride=2)
        d0_l = self.decoder_final_l(d0_l)
        local_sigmoid = F.sigmoid(d0_l)
        ##########################
        ### Fusion net - G/L
        ##########################
        fusion_sigmoid = get_masked_local_from_global(global_sigmoid, local_sigmoid)
        return global_sigmoid, local_sigmoid, fusion_sigmoid, global_sigmoid_side2, global_sigmoid_side1, global_sigmoid_side0
    


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class BasicBlock(nn.Module):
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")

        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4
    __constants__ = ['downsample']

    def __init__(self, inplanes, planes,stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        
    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.attention(out)

        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, zero_init_residual=False,
                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer
        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=1, padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
        self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
        self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
        self.maxpool5 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
        #pdb.set_trace()
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=1,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
                                       dilate=replace_stride_with_dilation[2])

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, 1000)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes,stride, downsample, self.groups,
                            self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes,groups=self.groups,
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def _forward_impl(self, x):
        x1 = self.conv1(x)
        x1 = self.bn1(x1)
        x1 = self.relu(x1)
        x1, idx1 = self.maxpool1(x1)

        x2, idx2 = self.maxpool2(x1)
        x2 = self.layer1(x2)

        x3, idx3 = self.maxpool3(x2)
        x3 = self.layer2(x3)

        x4, idx4 = self.maxpool4(x3)
        x4 = self.layer3(x4)

        x5, idx5 = self.maxpool5(x4)
        x5 = self.layer4(x5)
        
        x_cls = self.avgpool(x5)
        x_cls = torch.flatten(x_cls, 1)
        x_cls = self.fc(x_cls)

        return x_cls

    def forward(self, x):
        return self._forward_impl(x)


def resnet34_mp(**kwargs):
    r"""ResNet-34 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    checkpoint = torch.load("checkpoints/r34mp_pretrained_imagenet.pth.tar")
    model.load_state_dict(checkpoint)
    return model
        
##############################
### Training loses for P3M-NET
##############################
def get_crossentropy_loss(gt,pre):  
    gt_copy = gt.clone()
    gt_copy[gt_copy==0] = 0
    gt_copy[gt_copy==255] = 2
    gt_copy[gt_copy>2] = 1
    gt_copy = gt_copy.long()
    gt_copy = gt_copy[:,0,:,:]
    criterion = nn.CrossEntropyLoss()
    entropy_loss = criterion(pre, gt_copy)
    return entropy_loss

def get_alpha_loss(predict, alpha, trimap):
    weighted = torch.zeros(trimap.shape).cuda()
    weighted[trimap == 128] = 1.
    alpha_f = alpha / 255.
    alpha_f = alpha_f.cuda()
    diff = predict - alpha_f
    diff = diff * weighted
    alpha_loss = torch.sqrt(diff ** 2 + 1e-12)
    alpha_loss_weighted = alpha_loss.sum() / (weighted.sum() + 1.)
    return alpha_loss_weighted

def get_alpha_loss_whole_img(predict, alpha):
    weighted = torch.ones(alpha.shape).cuda()
    alpha_f = alpha / 255.
    alpha_f = alpha_f.cuda()
    diff = predict - alpha_f
    alpha_loss = torch.sqrt(diff ** 2 + 1e-12)
    alpha_loss = alpha_loss.sum()/(weighted.sum())
    return alpha_loss

## Laplacian loss is refer to 
## https://gist.github.com/MarcoForte/a07c40a2b721739bb5c5987671aa5270
def build_gauss_kernel(size=5, sigma=1.0, n_channels=1, cuda=False):
    if size % 2 != 1:
        raise ValueError("kernel size must be uneven")
    grid = np.float32(np.mgrid[0:size,0:size].T)
    gaussian = lambda x: np.exp((x - size//2)**2/(-2*sigma**2))**2
    kernel = np.sum(gaussian(grid), axis=2)
    kernel /= np.sum(kernel)
    kernel = np.tile(kernel, (n_channels, 1, 1))
    kernel = torch.FloatTensor(kernel[:, None, :, :]).cuda()
    return Variable(kernel, requires_grad=False)

def conv_gauss(img, kernel):
    """ convolve img with a gaussian kernel that has been built with build_gauss_kernel """
    n_channels, _, kw, kh = kernel.shape
    img = fnn.pad(img, (kw//2, kh//2, kw//2, kh//2), mode='replicate')
    return fnn.conv2d(img, kernel, groups=n_channels)

def laplacian_pyramid(img, kernel, max_levels=5):
    current = img
    pyr = []
    for level in range(max_levels):
        filtered = conv_gauss(current, kernel)
        diff = current - filtered
        pyr.append(diff)
        current = fnn.avg_pool2d(filtered, 2)
    pyr.append(current)
    return pyr

def get_laplacian_loss(predict, alpha, trimap):
    weighted = torch.zeros(trimap.shape).cuda()
    weighted[trimap == 128] = 1.
    alpha_f = alpha / 255.
    alpha_f = alpha_f.cuda()
    alpha_f = alpha_f.clone()*weighted
    predict = predict.clone()*weighted
    gauss_kernel = build_gauss_kernel(size=5, sigma=1.0, n_channels=1, cuda=True)
    pyr_alpha  = laplacian_pyramid(alpha_f, gauss_kernel, 5)
    pyr_predict = laplacian_pyramid(predict, gauss_kernel, 5)
    laplacian_loss_weighted = sum(fnn.l1_loss(a, b) for a, b in zip(pyr_alpha, pyr_predict))
    return laplacian_loss_weighted

def get_laplacian_loss_whole_img(predict, alpha):
    alpha_f = alpha / 255.
    alpha_f = alpha_f.cuda()
    gauss_kernel = build_gauss_kernel(size=5, sigma=1.0, n_channels=1, cuda=True)
    pyr_alpha  = laplacian_pyramid(alpha_f, gauss_kernel, 5)
    pyr_predict = laplacian_pyramid(predict, gauss_kernel, 5)
    laplacian_loss = sum(fnn.l1_loss(a, b) for a, b in zip(pyr_alpha, pyr_predict))
    return laplacian_loss

def get_composition_loss_whole_img(img, alpha, fg, bg, predict):
    weighted = torch.ones(alpha.shape).cuda()
    predict_3 = torch.cat((predict, predict, predict), 1)
    comp = predict_3 * fg + (1. - predict_3) * bg
    comp_loss = torch.sqrt((comp - img) ** 2 + 1e-12)
    comp_loss = comp_loss.sum()/(weighted.sum())
    return comp_loss

##############################
### Test loss for matting
##############################
def calculate_sad_mse_mad(predict_old,alpha,trimap):
    predict = np.copy(predict_old)
    pixel = float((trimap == 128).sum())
    predict[trimap == 255] = 1.
    predict[trimap == 0  ] = 0.
    sad_diff = np.sum(np.abs(predict - alpha))/1000
    if pixel==0:
        pixel = trimap.shape[0]*trimap.shape[1]-float((trimap==255).sum())-float((trimap==0).sum())
    mse_diff = np.sum((predict - alpha) ** 2)/pixel
    mad_diff = np.sum(np.abs(predict - alpha))/pixel
    return sad_diff, mse_diff, mad_diff
    
def calculate_sad_mse_mad_whole_img(predict, alpha):
    pixel = predict.shape[0]*predict.shape[1]
    sad_diff = np.sum(np.abs(predict - alpha))/1000
    mse_diff = np.sum((predict - alpha) ** 2)/pixel
    mad_diff = np.sum(np.abs(predict - alpha))/pixel
    return sad_diff, mse_diff, mad_diff 

def calculate_sad_fgbg(predict, alpha, trimap):
    sad_diff = np.abs(predict-alpha)
    weight_fg = np.zeros(predict.shape)
    weight_bg = np.zeros(predict.shape)
    weight_trimap = np.zeros(predict.shape)
    weight_fg[trimap==255] = 1.
    weight_bg[trimap==0  ] = 1.
    weight_trimap[trimap==128  ] = 1.
    sad_fg = np.sum(sad_diff*weight_fg)/1000
    sad_bg = np.sum(sad_diff*weight_bg)/1000
    sad_trimap = np.sum(sad_diff*weight_trimap)/1000
    return sad_fg, sad_bg

def compute_gradient_whole_image(pd, gt):
    from scipy.ndimage import gaussian_filter
    pd_x = gaussian_filter(pd, sigma=1.4, order=[1, 0], output=np.float32)
    pd_y = gaussian_filter(pd, sigma=1.4, order=[0, 1], output=np.float32)
    gt_x = gaussian_filter(gt, sigma=1.4, order=[1, 0], output=np.float32)
    gt_y = gaussian_filter(gt, sigma=1.4, order=[0, 1], output=np.float32)
    pd_mag = np.sqrt(pd_x**2 + pd_y**2)
    gt_mag = np.sqrt(gt_x**2 + gt_y**2)

    error_map = np.square(pd_mag - gt_mag)
    loss = np.sum(error_map) / 10
    return loss

def compute_connectivity_loss_whole_image(pd, gt, step=0.1):

    from scipy.ndimage import morphology
    from skimage.measure import label, regionprops
    h, w = pd.shape
    thresh_steps = np.arange(0, 1.1, step)
    l_map = -1 * np.ones((h, w), dtype=np.float32)
    lambda_map = np.ones((h, w), dtype=np.float32)
    for i in range(1, thresh_steps.size):
        pd_th = pd >= thresh_steps[i]
        gt_th = gt >= thresh_steps[i]
        label_image = label(pd_th & gt_th, connectivity=1)
        cc = regionprops(label_image)
        size_vec = np.array([c.area for c in cc])
        if len(size_vec) == 0:
            continue
        max_id = np.argmax(size_vec)
        coords = cc[max_id].coords
        omega = np.zeros((h, w), dtype=np.float32)
        omega[coords[:, 0], coords[:, 1]] = 1
        flag = (l_map == -1) & (omega == 0)
        l_map[flag == 1] = thresh_steps[i-1]
        dist_maps = morphology.distance_transform_edt(omega==0)
        dist_maps = dist_maps / dist_maps.max()
    l_map[l_map == -1] = 1
    d_pd = pd - l_map
    d_gt = gt - l_map
    phi_pd = 1 - d_pd * (d_pd >= 0.15).astype(np.float32)
    phi_gt = 1 - d_gt * (d_gt >= 0.15).astype(np.float32)
    loss = np.sum(np.abs(phi_pd - phi_gt)) / 1000
    return loss



def gen_trimap_from_segmap_e2e(segmap):
    trimap = np.argmax(segmap, axis=1)[0]
    trimap = trimap.astype(np.int64)    
    trimap[trimap==1]=128
    trimap[trimap==2]=255
    return trimap.astype(np.uint8)

def get_masked_local_from_global(global_sigmoid, local_sigmoid):
    values, index = torch.max(global_sigmoid,1)
    index = index[:,None,:,:].float()
    ### index <===> [0, 1, 2]
    ### bg_mask <===> [1, 0, 0]
    bg_mask = index.clone()
    bg_mask[bg_mask==2]=1
    bg_mask = 1- bg_mask
    ### trimap_mask <===> [0, 1, 0]
    trimap_mask = index.clone()
    trimap_mask[trimap_mask==2]=0
    ### fg_mask <===> [0, 0, 1]
    fg_mask = index.clone()
    fg_mask[fg_mask==1]=0
    fg_mask[fg_mask==2]=1
    fusion_sigmoid = local_sigmoid*trimap_mask+fg_mask
    return fusion_sigmoid

def get_masked_local_from_global_test(global_result, local_result):
    weighted_global = np.ones(global_result.shape)
    weighted_global[global_result==255] = 0
    weighted_global[global_result==0] = 0
    fusion_result = global_result*(1.-weighted_global)/255+local_result*weighted_global
    return fusion_result
def inference_once( model, scale_img, scale_trimap=None):
    pred_list = []
    tensor_img = torch.from_numpy(scale_img[:, :, :]).permute(2, 0, 1).to(device)
    input_t = tensor_img
    input_t = input_t/255.0
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
    input_t = normalize(input_t)
    input_t = input_t.unsqueeze(0).float()
   # pred_global, pred_local, pred_fusion = model(input_t)[:3]
    pred_fusion = model(input_t)[:3]
    pred_global = pred_fusion
    pred_local = pred_fusion

    pred_global = pred_global.data.cpu().numpy()
    pred_global = gen_trimap_from_segmap_e2e(pred_global)
    pred_local = pred_local.data.cpu().numpy()[0,0,:,:]
    pred_fusion = pred_fusion.data.cpu().numpy()[0,0,:,:]
    return pred_global, pred_local, pred_fusion

# def inference_img( test_choice,model, img):
#     h, w, c = img.shape
#     new_h = min(config['datasets'].MAX_SIZE_H, h - (h % 32))
#     new_w = min(config['datasets'].MAX_SIZE_W, w - (w % 32))
#     if test_choice=='HYBRID':
#         global_ratio = 1/2
#         local_ratio = 1
#         resize_h = int(h*global_ratio)
#         resize_w = int(w*global_ratio)
#         new_h = min(config['datasets'].MAX_SIZE_H, resize_h - (resize_h % 32))
#         new_w = min(config['datasets'].MAX_SIZE_W, resize_w - (resize_w % 32))
#         scale_img = resize(img,(new_h,new_w))*255.0
#         pred_coutour_1, pred_retouching_1, pred_fusion_1 = inference_once( model, scale_img)
#         pred_coutour_1 = resize(pred_coutour_1,(h,w))*255.0
#         resize_h = int(h*local_ratio)
#         resize_w = int(w*local_ratio)
#         new_h = min(config['datasets'].MAX_SIZE_H, resize_h - (resize_h % 32))
#         new_w = min(config['datasets'].MAX_SIZE_W, resize_w - (resize_w % 32))
#         scale_img = resize(img,(new_h,new_w))*255.0
#         pred_coutour_2, pred_retouching_2, pred_fusion_2 = inference_once( model, scale_img)        
#         pred_retouching_2 = resize(pred_retouching_2,(h,w))
#         pred_fusion = get_masked_local_from_global_test(pred_coutour_1, pred_retouching_2)
#         return pred_fusion
#     else:
#         resize_h = int(h/2)
#         resize_w = int(w/2)
#         new_h = min(config['datasets'].MAX_SIZE_H, resize_h - (resize_h % 32))
#         new_w = min(config['datasets'].MAX_SIZE_W, resize_w - (resize_w % 32))
#         scale_img = resize(img,(new_h,new_w))*255.0
#         pred_global, pred_local, pred_fusion = inference_once( model, scale_img)
#         pred_local = resize(pred_local,(h,w))
#         pred_global = resize(pred_global,(h,w))*255.0
#         pred_fusion = resize(pred_fusion,(h,w))
#         return pred_fusion


def inference_img(model, img):
    h,w,_ = img.shape
    # print(img.shape)
    if h%8!=0 or w%8!=0:
        img=cv2.copyMakeBorder(img, 8-h%8, 0, 8-w%8, 0, cv2.BORDER_REFLECT)
    # print(img.shape)

    tensor_img = torch.from_numpy(img).permute(2, 0, 1).cuda()
    input_t = tensor_img
    input_t = input_t/255.0
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
    input_t = normalize(input_t)
    input_t = input_t.unsqueeze(0).float()
    with torch.no_grad():
        out=model(input_t)
    # print("out",out.shape)
    result = out[0][:,-h:,-w:].cpu().numpy()
    # print(result.shape)

    return result[0]
    
    

def test_am2k(model):
    ############################
    # Some initial setting for paths
    ############################
    ORIGINAL_PATH = config['datasets']['am2k']['validation_original']
    MASK_PATH = config['datasets']['am2k']['validation_mask']
    TRIMAP_PATH = config['datasets']['am2k']['validation_trimap']
    img_paths = glob.glob(ORIGINAL_PATH+"/*.jpg")

    ############################
    # Start testing
    ############################
    sad_diffs = 0.
    mse_diffs = 0.
    mad_diffs = 0.
    grad_diffs = 0.
    conn_diffs = 0.
    sad_trimap_diffs = 0.
    mse_trimap_diffs = 0.
    mad_trimap_diffs = 0.
    sad_fg_diffs = 0.
    sad_bg_diffs = 0.


    total_number = len(img_paths)
    log("===============================")
    log(f'====> Start Testing\n\t--Dataset: AM2k\n\t-\n\t--Number: {total_number}')

    for img_path in tqdm.tqdm(img_paths):
        img_name=(img_path.split("/")[-1])[:-4]
        alpha_path = MASK_PATH+img_name+'.png'
        trimap_path = TRIMAP_PATH+img_name+'.png'
        pil_img = Image.open(img_path)
        img = np.array(pil_img)
        trimap = np.array(Image.open(trimap_path))
        alpha = np.array(Image.open(alpha_path))/255.
        img = img[:,:,:3] if img.ndim>2 else img
        trimap = trimap[:,:,0] if trimap.ndim>2 else trimap
        alpha = alpha[:,:,0] if alpha.ndim>2 else alpha

        with torch.no_grad():
            torch.cuda.empty_cache()
            predict = inference_img( model, img)

        
            sad_trimap_diff, mse_trimap_diff, mad_trimap_diff = calculate_sad_mse_mad(predict, alpha, trimap)
            sad_diff, mse_diff, mad_diff = calculate_sad_mse_mad_whole_img(predict, alpha)
            sad_fg_diff, sad_bg_diff = calculate_sad_fgbg(predict, alpha, trimap)
            conn_diff = compute_connectivity_loss_whole_image(predict, alpha)
            grad_diff = compute_gradient_whole_image(predict, alpha)

            log(f"[{img_paths.index(img_path)}/{total_number}]\nImage:{img_name}\nsad:{sad_diff}\nmse:{mse_diff}\nmad:{mad_diff}\nsad_trimap:{sad_trimap_diff}\nmse_trimap:{mse_trimap_diff}\nmad_trimap:{mad_trimap_diff}\nsad_fg:{sad_fg_diff}\nsad_bg:{sad_bg_diff}\nconn:{conn_diff}\ngrad:{grad_diff}\n-----------")

            sad_diffs += sad_diff
            mse_diffs += mse_diff
            mad_diffs += mad_diff
            mse_trimap_diffs += mse_trimap_diff
            sad_trimap_diffs += sad_trimap_diff
            mad_trimap_diffs += mad_trimap_diff
            sad_fg_diffs += sad_fg_diff
            sad_bg_diffs += sad_bg_diff
            conn_diffs += conn_diff
            grad_diffs += grad_diff
            Image.fromarray(np.uint8(predict*255)).save(f"test/{img_name}.png")


    log("===============================")
    log(f"Testing numbers: {total_number}")

   
    log("SAD: {}".format(sad_diffs / total_number))
    log("MSE: {}".format(mse_diffs / total_number))
    log("MAD: {}".format(mad_diffs / total_number))
    log("GRAD: {}".format(grad_diffs / total_number))
    log("CONN: {}".format(conn_diffs / total_number))
    log("SAD TRIMAP: {}".format(sad_trimap_diffs / total_number))
    log("MSE TRIMAP: {}".format(mse_trimap_diffs / total_number))
    log("MAD TRIMAP: {}".format(mad_trimap_diffs / total_number))
    log("SAD FG: {}".format(sad_fg_diffs / total_number))
    log("SAD BG: {}".format(sad_bg_diffs / total_number))
    return sad_diffs/total_number,mse_diffs/total_number,grad_diffs/total_number


def test_p3m10k(model,dataset_choice, max_image=-1):
    ############################
    # Some initial setting for paths
    ############################
    if dataset_choice == 'P3M_500_P':
        val_option = 'VAL500P'
    else:
        val_option = 'VAL500NP'
    ORIGINAL_PATH = config['datasets']['p3m10k']+"/validation/"+config['datasets']['p3m10k_test'][val_option]['ORIGINAL_PATH']
    MASK_PATH = config['datasets']['p3m10k']+"/validation/"+config['datasets']['p3m10k_test'][val_option]['MASK_PATH']
    TRIMAP_PATH = config['datasets']['p3m10k']+"/validation/"+config['datasets']['p3m10k_test'][val_option]['TRIMAP_PATH']
    ############################
    # Start testing
    ############################
    sad_diffs = 0.
    mse_diffs = 0.
    mad_diffs = 0.
    sad_trimap_diffs = 0.
    mse_trimap_diffs = 0.
    mad_trimap_diffs = 0.
    sad_fg_diffs = 0.
    sad_bg_diffs = 0.
    conn_diffs = 0.
    grad_diffs = 0.
    model.eval()
    img_paths = glob.glob(ORIGINAL_PATH+"/*.jpg")
    if (max_image>1):
        img_paths = img_paths[:max_image]
    total_number = len(img_paths)
    log("===============================")
    log(f'====> Start Testing\n\t----Test: {dataset_choice}\n\t--Number: {total_number}')

    for img_path in tqdm.tqdm(img_paths):
        img_name=(img_path.split("/")[-1])[:-4]
        alpha_path = MASK_PATH+img_name+'.png'
        trimap_path = TRIMAP_PATH+img_name+'.png'
        pil_img = Image.open(img_path)
        img = np.array(pil_img)
    
        trimap = np.array(Image.open(trimap_path))
        alpha = np.array(Image.open(alpha_path))/255.
        img = img[:,:,:3] if img.ndim>2 else img
        trimap = trimap[:,:,0] if trimap.ndim>2 else trimap
        alpha = alpha[:,:,0] if alpha.ndim>2 else alpha
        with torch.no_grad():
            torch.cuda.empty_cache()
            start = time.time()


            predict = inference_img( model, img) #HYBRID show less accuracy
        
            # tensorimg=transforms.ToTensor()(pil_img)
            # input_img=transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(tensorimg)
          
            # predict = model(input_img.unsqueeze(0).to(device))[0][0].detach().cpu().numpy()
            # if predict.shape!=(pil_img.height,pil_img.width):
            #     print("resize for ",img_path)
            #     predict = resize(predict,(pil_img.height,pil_img.width))
            sad_trimap_diff, mse_trimap_diff, mad_trimap_diff = calculate_sad_mse_mad(predict, alpha, trimap)
            sad_diff, mse_diff, mad_diff = calculate_sad_mse_mad_whole_img(predict, alpha)
          
            sad_fg_diff, sad_bg_diff = calculate_sad_fgbg(predict, alpha, trimap)
            conn_diff = compute_connectivity_loss_whole_image(predict, alpha)
            grad_diff = compute_gradient_whole_image(predict, alpha)
            log(f"[{img_paths.index(img_path)}/{total_number}]\nImage:{img_name}\nsad:{sad_diff}\nmse:{mse_diff}\nmad:{mad_diff}\nconn:{conn_diff}\ngrad:{grad_diff}\n-----------")
            sad_diffs += sad_diff
            mse_diffs += mse_diff
            mad_diffs += mad_diff
            mse_trimap_diffs += mse_trimap_diff
            sad_trimap_diffs += sad_trimap_diff
            mad_trimap_diffs += mad_trimap_diff
            sad_fg_diffs += sad_fg_diff
            sad_bg_diffs += sad_bg_diff
            conn_diffs += conn_diff
            grad_diffs += grad_diff
    
            Image.fromarray(np.uint8(predict*255)).save(f"test/{img_name}.png")
           
    log("===============================")
    log(f"Testing numbers: {total_number}")
    log("SAD: {}".format(sad_diffs / total_number))
    log("MSE: {}".format(mse_diffs / total_number))
    log("MAD: {}".format(mad_diffs / total_number))
    log("SAD TRIMAP: {}".format(sad_trimap_diffs / total_number))
    log("MSE TRIMAP: {}".format(mse_trimap_diffs / total_number))
    log("MAD TRIMAP: {}".format(mad_trimap_diffs / total_number))
    log("SAD FG: {}".format(sad_fg_diffs / total_number))
    log("SAD BG: {}".format(sad_bg_diffs / total_number))
    log("CONN: {}".format(conn_diffs / total_number))
    log("GRAD: {}".format(grad_diffs / total_number))

    return sad_diffs/total_number,mse_diffs/total_number,grad_diffs/total_number

def log(str):
    print(str)
    logging.info(str)

if __name__ == '__main__':
    print('*********************************')  
    config = OmegaConf.load("base.yaml")
    config=OmegaConf.merge(config,OmegaConf.from_cli())
    print(config)
    model =  MaskForm()
    model =  model.to(device)
    checkpoint = f"{config.checkpoint_dir}/{config.checkpoint}"
    state_dict = torch.load(checkpoint, map_location=f'{device}')
    print("loaded",checkpoint)
    model.load_state_dict(state_dict)
    model.eval()
    logging.basicConfig(filename=f'report/{config.checkpoint.replace("/","--")}.report', encoding='utf-8',filemode='w', level=logging.INFO)
    # ckpt = torch.load("checkpoints/p3mnet_pretrained_on_p3m10k.pth")
    # model.load_state_dict(ckpt['state_dict'], strict=True)
    # model = model.cuda()
    if config.dataset_to_use =="AM2K":
         test_am2k(model)
    else:
        for dataset_choice in ['P3M_500_P','P3M_500_NP']:        
            test_p3m10k(model,dataset_choice)