Spaces:
Running
Running
File size: 24,392 Bytes
395d300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
# Codes are borrowed from
# https://github.com/ZHKKKe/MODNet/blob/master/src/trainer.py
# https://github.com/ZHKKKe/MODNet/blob/master/src/models/backbones/mobilenetv2.py
# https://github.com/ZHKKKe/MODNet/blob/master/src/models/modnet.py
import numpy as np
import scipy
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import math
import torch
from scipy.ndimage import gaussian_filter
# ----------------------------------------------------------------------------------
# Loss Functions
# ----------------------------------------------------------------------------------
class GaussianBlurLayer(nn.Module):
""" Add Gaussian Blur to a 4D tensors
This layer takes a 4D tensor of {N, C, H, W} as input.
The Gaussian blur will be performed in given channel number (C) splitly.
"""
def __init__(self, channels, kernel_size):
"""
Arguments:
channels (int): Channel for input tensor
kernel_size (int): Size of the kernel used in blurring
"""
super(GaussianBlurLayer, self).__init__()
self.channels = channels
self.kernel_size = kernel_size
assert self.kernel_size % 2 != 0
self.op = nn.Sequential(
nn.ReflectionPad2d(math.floor(self.kernel_size / 2)),
nn.Conv2d(channels, channels, self.kernel_size,
stride=1, padding=0, bias=None, groups=channels)
)
self._init_kernel()
def forward(self, x):
"""
Arguments:
x (torch.Tensor): input 4D tensor
Returns:
torch.Tensor: Blurred version of the input
"""
if not len(list(x.shape)) == 4:
print('\'GaussianBlurLayer\' requires a 4D tensor as input\n')
exit()
elif not x.shape[1] == self.channels:
print('In \'GaussianBlurLayer\', the required channel ({0}) is'
'not the same as input ({1})\n'.format(self.channels, x.shape[1]))
exit()
return self.op(x)
def _init_kernel(self):
sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8
n = np.zeros((self.kernel_size, self.kernel_size))
i = math.floor(self.kernel_size / 2)
n[i, i] = 1
kernel = gaussian_filter(n, sigma)
for name, param in self.named_parameters():
param.data.copy_(torch.from_numpy(kernel))
param.requires_grad = False
blurer = GaussianBlurLayer(1, 3)
def loss_func(pred_semantic, pred_detail, pred_matte, image, trimap, gt_matte,
semantic_scale=10.0, detail_scale=10.0, matte_scale=1.0):
""" loss of MODNet
Arguments:
blurer: GaussianBlurLayer
pred_semantic: model output
pred_detail: model output
pred_matte: model output
image : input RGB image ts pixel values should be normalized
trimap : trimap used to calculate the losses
its pixel values can be 0, 0.5, or 1
(foreground=1, background=0, unknown=0.5)
gt_matte: ground truth alpha matte its pixel values are between [0, 1]
semantic_scale (float): scale of the semantic loss
NOTE: please adjust according to your dataset
detail_scale (float): scale of the detail loss
NOTE: please adjust according to your dataset
matte_scale (float): scale of the matte loss
NOTE: please adjust according to your dataset
Returns:
semantic_loss (torch.Tensor): loss of the semantic estimation [Low-Resolution (LR) Branch]
detail_loss (torch.Tensor): loss of the detail prediction [High-Resolution (HR) Branch]
matte_loss (torch.Tensor): loss of the semantic-detail fusion [Fusion Branch]
"""
trimap = trimap.float()
# calculate the boundary mask from the trimap
boundaries = (trimap < 0.5) + (trimap > 0.5)
# calculate the semantic loss
gt_semantic = F.interpolate(gt_matte, scale_factor=1 / 16, mode='bilinear')
gt_semantic = blurer(gt_semantic)
semantic_loss = torch.mean(F.mse_loss(pred_semantic, gt_semantic))
semantic_loss = semantic_scale * semantic_loss
# calculate the detail loss
pred_boundary_detail = torch.where(boundaries, trimap, pred_detail.float())
gt_detail = torch.where(boundaries, trimap, gt_matte.float())
detail_loss = torch.mean(F.l1_loss(pred_boundary_detail, gt_detail.float()))
detail_loss = detail_scale * detail_loss
# calculate the matte loss
pred_boundary_matte = torch.where(boundaries, trimap, pred_matte.float())
matte_l1_loss = F.l1_loss(pred_matte, gt_matte) + 4.0 * F.l1_loss(pred_boundary_matte, gt_matte)
matte_compositional_loss = F.l1_loss(image * pred_matte, image * gt_matte) \
+ 4.0 * F.l1_loss(image * pred_boundary_matte, image * gt_matte)
matte_loss = torch.mean(matte_l1_loss + matte_compositional_loss)
matte_loss = matte_scale * matte_loss
return semantic_loss, detail_loss, matte_loss
# ------------------------------------------------------------------------------
# Useful functions
# ------------------------------------------------------------------------------
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def conv_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
# ------------------------------------------------------------------------------
# Class of Inverted Residual block
# ------------------------------------------------------------------------------
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expansion, dilation=1):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = round(inp * expansion)
self.use_res_connect = self.stride == 1 and inp == oup
if expansion == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
# ------------------------------------------------------------------------------
# Class of MobileNetV2
# ------------------------------------------------------------------------------
class MobileNetV2(nn.Module):
def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000):
super(MobileNetV2, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
input_channel = 32
last_channel = 1280
interverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[expansion, 24, 2, 2],
[expansion, 32, 3, 2],
[expansion, 64, 4, 2],
[expansion, 96, 3, 1],
[expansion, 160, 3, 2],
[expansion, 320, 1, 1],
]
# building first layer
input_channel = _make_divisible(input_channel * alpha, 8)
self.last_channel = _make_divisible(last_channel * alpha, 8) if alpha > 1.0 else last_channel
self.features = [conv_bn(self.in_channels, input_channel, 2)]
# building inverted residual blocks
for t, c, n, s in interverted_residual_setting:
output_channel = _make_divisible(int(c * alpha), 8)
for i in range(n):
if i == 0:
self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t))
else:
self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t))
input_channel = output_channel
# building last several layers
self.features.append(conv_1x1_bn(input_channel, self.last_channel))
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
# building classifier
if self.num_classes is not None:
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, num_classes),
)
# Initialize weights
self._init_weights()
def forward(self, x):
# Stage1
x = self.features[0](x)
x = self.features[1](x)
# Stage2
x = self.features[2](x)
x = self.features[3](x)
# Stage3
x = self.features[4](x)
x = self.features[5](x)
x = self.features[6](x)
# Stage4
x = self.features[7](x)
x = self.features[8](x)
x = self.features[9](x)
x = self.features[10](x)
x = self.features[11](x)
x = self.features[12](x)
x = self.features[13](x)
# Stage5
x = self.features[14](x)
x = self.features[15](x)
x = self.features[16](x)
x = self.features[17](x)
x = self.features[18](x)
# Classification
if self.num_classes is not None:
x = x.mean(dim=(2, 3))
x = self.classifier(x)
# Output
return x
def _load_pretrained_model(self, pretrained_file):
pretrain_dict = torch.load(pretrained_file, map_location='cpu')
model_dict = {}
state_dict = self.state_dict()
print("[MobileNetV2] Loading pretrained model...")
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
else:
print(k, "is ignored")
state_dict.update(model_dict)
self.load_state_dict(state_dict)
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
class BaseBackbone(nn.Module):
""" Superclass of Replaceable Backbone Model for Semantic Estimation
"""
def __init__(self, in_channels):
super(BaseBackbone, self).__init__()
self.in_channels = in_channels
self.model = None
self.enc_channels = []
def forward(self, x):
raise NotImplementedError
def load_pretrained_ckpt(self):
raise NotImplementedError
class MobileNetV2Backbone(BaseBackbone):
""" MobileNetV2 Backbone
"""
def __init__(self, in_channels):
super(MobileNetV2Backbone, self).__init__(in_channels)
self.model = MobileNetV2(self.in_channels, alpha=1.0, expansion=6, num_classes=None)
self.enc_channels = [16, 24, 32, 96, 1280]
def forward(self, x):
# x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
x = self.model.features[0](x)
x = self.model.features[1](x)
enc2x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
x = self.model.features[2](x)
x = self.model.features[3](x)
enc4x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
x = self.model.features[4](x)
x = self.model.features[5](x)
x = self.model.features[6](x)
enc8x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
x = self.model.features[7](x)
x = self.model.features[8](x)
x = self.model.features[9](x)
x = self.model.features[10](x)
x = self.model.features[11](x)
x = self.model.features[12](x)
x = self.model.features[13](x)
enc16x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
x = self.model.features[14](x)
x = self.model.features[15](x)
x = self.model.features[16](x)
x = self.model.features[17](x)
x = self.model.features[18](x)
enc32x = x
return [enc2x, enc4x, enc8x, enc16x, enc32x]
def load_pretrained_ckpt(self):
# the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
if not os.path.exists(ckpt_path):
print('cannot find the pretrained mobilenetv2 backbone')
exit()
ckpt = torch.load(ckpt_path)
self.model.load_state_dict(ckpt)
SUPPORTED_BACKBONES = {
'mobilenetv2': MobileNetV2Backbone,
}
# ------------------------------------------------------------------------------
# MODNet Basic Modules
# ------------------------------------------------------------------------------
class IBNorm(nn.Module):
""" Combine Instance Norm and Batch Norm into One Layer
"""
def __init__(self, in_channels):
super(IBNorm, self).__init__()
in_channels = in_channels
self.bnorm_channels = int(in_channels / 2)
self.inorm_channels = in_channels - self.bnorm_channels
self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
def forward(self, x):
bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())
return torch.cat((bn_x, in_x), 1)
class Conv2dIBNormRelu(nn.Module):
""" Convolution + IBNorm + ReLu
"""
def __init__(self, in_channels, out_channels, kernel_size,
stride=1, padding=0, dilation=1, groups=1, bias=True,
with_ibn=True, with_relu=True):
super(Conv2dIBNormRelu, self).__init__()
layers = [
nn.Conv2d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
]
if with_ibn:
layers.append(IBNorm(out_channels))
if with_relu:
layers.append(nn.ReLU(inplace=True))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class SEBlock(nn.Module):
""" SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
"""
def __init__(self, in_channels, out_channels, reduction=1):
super(SEBlock, self).__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, int(in_channels // reduction), bias=False),
nn.ReLU(inplace=True),
nn.Linear(int(in_channels // reduction), out_channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
w = self.pool(x).view(b, c)
w = self.fc(w).view(b, c, 1, 1)
return x * w.expand_as(x)
# ------------------------------------------------------------------------------
# MODNet Branches
# ------------------------------------------------------------------------------
class LRBranch(nn.Module):
""" Low Resolution Branch of MODNet
"""
def __init__(self, backbone):
super(LRBranch, self).__init__()
enc_channels = backbone.enc_channels
self.backbone = backbone
self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False,
with_relu=False)
def forward(self, img, inference):
enc_features = self.backbone.forward(img)
enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]
enc32x = self.se_block(enc32x)
lr16x = F.interpolate(enc32x, scale_factor=2, mode='bilinear', align_corners=False)
lr16x = self.conv_lr16x(lr16x)
lr8x = F.interpolate(lr16x, scale_factor=2, mode='bilinear', align_corners=False)
lr8x = self.conv_lr8x(lr8x)
pred_semantic = None
if not inference:
lr = self.conv_lr(lr8x)
pred_semantic = torch.sigmoid(lr)
return pred_semantic, lr8x, [enc2x, enc4x]
class HRBranch(nn.Module):
""" High Resolution Branch of MODNet
"""
def __init__(self, hr_channels, enc_channels):
super(HRBranch, self).__init__()
self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)
self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
self.conv_hr4x = nn.Sequential(
Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
)
self.conv_hr2x = nn.Sequential(
Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
)
self.conv_hr = nn.Sequential(
Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
)
def forward(self, img, enc2x, enc4x, lr8x, inference):
img2x = F.interpolate(img, scale_factor=1 / 2, mode='bilinear', align_corners=False)
img4x = F.interpolate(img, scale_factor=1 / 4, mode='bilinear', align_corners=False)
enc2x = self.tohr_enc2x(enc2x)
hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))
enc4x = self.tohr_enc4x(enc4x)
hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))
lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))
hr2x = F.interpolate(hr4x, scale_factor=2, mode='bilinear', align_corners=False)
hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))
pred_detail = None
if not inference:
hr = F.interpolate(hr2x, scale_factor=2, mode='bilinear', align_corners=False)
hr = self.conv_hr(torch.cat((hr, img), dim=1))
pred_detail = torch.sigmoid(hr)
return pred_detail, hr2x
class FusionBranch(nn.Module):
""" Fusion Branch of MODNet
"""
def __init__(self, hr_channels, enc_channels):
super(FusionBranch, self).__init__()
self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
self.conv_f = nn.Sequential(
Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
)
def forward(self, img, lr8x, hr2x):
lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
lr4x = self.conv_lr4x(lr4x)
lr2x = F.interpolate(lr4x, scale_factor=2, mode='bilinear', align_corners=False)
f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
f = F.interpolate(f2x, scale_factor=2, mode='bilinear', align_corners=False)
f = self.conv_f(torch.cat((f, img), dim=1))
pred_matte = torch.sigmoid(f)
return pred_matte
# ------------------------------------------------------------------------------
# MODNet
# ------------------------------------------------------------------------------
class MODNet(nn.Module):
""" Architecture of MODNet
"""
def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=False):
super(MODNet, self).__init__()
self.in_channels = in_channels
self.hr_channels = hr_channels
self.backbone_arch = backbone_arch
self.backbone_pretrained = backbone_pretrained
self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)
self.lr_branch = LRBranch(self.backbone)
self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)
for m in self.modules():
if isinstance(m, nn.Conv2d):
self._init_conv(m)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
self._init_norm(m)
if self.backbone_pretrained:
self.backbone.load_pretrained_ckpt()
def forward(self, img, inference):
pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(img, inference)
pred_detail, hr2x = self.hr_branch(img, enc2x, enc4x, lr8x, inference)
pred_matte = self.f_branch(img, lr8x, hr2x)
return pred_semantic, pred_detail, pred_matte
@staticmethod
def compute_loss(args):
pred_semantic, pred_detail, pred_matte, image, trimap, gt_matte = args
semantic_loss, detail_loss, matte_loss = loss_func(pred_semantic, pred_detail, pred_matte,
image, trimap, gt_matte)
loss = semantic_loss + detail_loss + matte_loss
return matte_loss, loss
def freeze_norm(self):
norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
for m in self.modules():
for n in norm_types:
if isinstance(m, n):
m.eval()
continue
def _init_conv(self, conv):
nn.init.kaiming_uniform_(
conv.weight, a=0, mode='fan_in', nonlinearity='relu')
if conv.bias is not None:
nn.init.constant_(conv.bias, 0)
def _init_norm(self, norm):
if norm.weight is not None:
nn.init.constant_(norm.weight, 1)
nn.init.constant_(norm.bias, 0)
def _apply(self, fn):
super(MODNet, self)._apply(fn)
blurer._apply(fn) # let blurer's device same as modnet
return self
|