Spaces:
Sleeping
Sleeping
File size: 8,285 Bytes
395d300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import albumentations as A
from torch.utils.data import Dataset, DataLoader
import pycocotools.mask as maskUtils
from pycocotools.coco import COCO
import random
import os.path as osp
import cv2
import numpy as np
from scipy.ndimage import distance_transform_bf, distance_transform_edt, distance_transform_cdt
def is_grey(img: np.ndarray):
if len(img.shape) == 3 and img.shape[2] == 3:
return False
else:
return True
def square_pad_resize(img: np.ndarray, tgt_size: int, pad_value = (0, 0, 0)):
h, w = img.shape[:2]
pad_h, pad_w = 0, 0
# make square image
if w < h:
pad_w = h - w
w += pad_w
elif h < w:
pad_h = w - h
h += pad_h
pad_size = tgt_size - h
if pad_size > 0:
pad_h += pad_size
pad_w += pad_size
if pad_h > 0 or pad_w > 0:
c = 1
if is_grey(img):
if isinstance(pad_value, tuple):
pad_value = pad_value[0]
else:
if isinstance(pad_value, int):
pad_value = (pad_value, pad_value, pad_value)
img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=pad_value)
resize_ratio = tgt_size / img.shape[0]
if resize_ratio < 1:
img = cv2.resize(img, (tgt_size, tgt_size), interpolation=cv2.INTER_AREA)
elif resize_ratio > 1:
img = cv2.resize(img, (tgt_size, tgt_size), interpolation=cv2.INTER_LINEAR)
return img, resize_ratio, pad_h, pad_w
class MaskRefineDataset(Dataset):
def __init__(self,
refine_ann_path: str,
data_root: str,
load_instance_mask: bool = True,
aug_ins_prob: float = 0.,
ins_rect_prob: float = 0.,
output_size: int = 720,
augmentation: bool = False,
with_distance: bool = False):
self.load_instance_mask = load_instance_mask
self.ann_util = COCO(refine_ann_path)
self.img_ids = self.ann_util.getImgIds()
self.set_load_method(load_instance_mask)
self.data_root = data_root
self.ins_rect_prob = ins_rect_prob
self.aug_ins_prob = aug_ins_prob
self.augmentation = augmentation
if augmentation:
transform = [
A.OpticalDistortion(),
A.HorizontalFlip(),
A.CLAHE(),
A.Posterize(),
A.CropAndPad(percent=0.1, p=0.3, pad_mode=cv2.BORDER_CONSTANT, pad_cval=0, pad_cval_mask=0, keep_size=True),
A.RandomContrast(),
A.Rotate(30, p=0.3, mask_value=0, border_mode=cv2.BORDER_CONSTANT)
]
self._aug_transform = A.Compose(transform)
else:
self._aug_transform = None
self.output_size = output_size
self.with_distance = with_distance
def set_output_size(self, size: int):
self.output_size = size
def set_load_method(self, load_instance_mask: bool):
if load_instance_mask:
self._load_mask = self._load_with_instance
else:
self._load_mask = self._load_without_instance
def __getitem__(self, idx: int):
img_id = self.img_ids[idx]
img_meta = self.ann_util.imgs[img_id]
img_path = osp.join(self.data_root, img_meta['file_name'])
img = cv2.imread(img_path)
annids = self.ann_util.getAnnIds([img_id])
if len(annids) > 0:
ann = random.choice(annids)
ann = self.ann_util.anns[ann]
assert ann['image_id'] == img_id
else:
ann = None
return self._load_mask(img, ann)
def transform(self, img: np.ndarray, mask: np.ndarray, ins_seg: np.ndarray = None) -> dict:
if ins_seg is not None:
use_seg = True
else:
use_seg = False
if self.augmentation:
masks = [mask]
if use_seg:
masks.append(ins_seg)
data = self._aug_transform(image=img, masks=masks)
img = data['image']
masks = data['masks']
mask = masks[0]
if use_seg:
ins_seg = masks[1]
img = square_pad_resize(img, self.output_size, random.randint(0, 255))[0]
mask = square_pad_resize(mask, self.output_size, 0)[0]
if ins_seg is not None:
ins_seg = square_pad_resize(ins_seg, self.output_size, 0)[0]
img = (img.astype(np.float32) / 255.).transpose((2, 0, 1))
mask = mask[None, ...]
if use_seg:
ins_seg = ins_seg[None, ...]
img = np.concatenate((img, ins_seg), axis=0)
data = {'img': img, 'mask': mask}
if self.with_distance:
dist = distance_transform_edt(mask[0])
dist_max = dist.max()
if dist_max != 0:
dist = 1 - dist / dist_max
# diff_mat = cv2.bitwise_xor(mask[0], ins_seg[0])
# dist = dist + diff_mat + 0.2
dist = dist + 0.2
dist = dist.size / (dist.sum() + 1) * dist
dist = np.clip(dist, 0, 20)
else:
dist = np.ones_like(dist)
# print(dist.max(), dist.min())
data['dist_weight'] = dist[None, ...]
return data
def _load_with_instance(self, img: np.ndarray, ann: dict):
if ann is None:
mask = np.zeros(img.shape[:2], dtype=np.float32)
ins_seg = mask
else:
mask = maskUtils.decode(ann['segmentation']).astype(np.float32)
if self.augmentation and random.random() < self.ins_rect_prob:
ins_seg = np.zeros_like(mask)
bbox = [int(b) for b in ann['bbox']]
ins_seg[bbox[1]: bbox[1] + bbox[3], bbox[0]: bbox[0] + bbox[2]] = 1
elif len(ann['pred_segmentations']) > 0:
ins_seg = random.choice(ann['pred_segmentations'])
ins_seg = maskUtils.decode(ins_seg).astype(np.float32)
else:
ins_seg = mask
if self.augmentation and random.random() < self.aug_ins_prob:
ksize = random.choice([1, 3, 5, 7])
ksize = ksize * 2 + 1
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(ksize, ksize))
if random.random() < 0.5:
ins_seg = cv2.dilate(ins_seg, kernel)
else:
ins_seg = cv2.erode(ins_seg, kernel)
return self.transform(img, mask, ins_seg)
def _load_without_instance(self, img: np.ndarray, ann: dict):
if ann is None:
mask = np.zeros(img.shape[:2], dtype=np.float32)
else:
mask = maskUtils.decode(ann['segmentation']).astype(np.float32)
return self.transform(img, mask)
def __len__(self):
return len(self.img_ids)
if __name__ == '__main__':
ann_path = r'workspace/test_syndata/annotations/refine_train.json'
data_root = r'workspace/test_syndata/train'
ann_path = r'workspace/test_syndata/annotations/refine_train.json'
data_root = r'workspace/test_syndata/train'
aug_ins_prob = 0.5
load_instance_mask = True
ins_rect_prob = 0.25
output_size = 640
augmentation = True
random.seed(0)
md = MaskRefineDataset(ann_path, data_root, load_instance_mask, aug_ins_prob, ins_rect_prob, output_size, augmentation, with_distance=True)
dl = DataLoader(md, batch_size=1, shuffle=False, persistent_workers=True,
num_workers=1, pin_memory=True)
for data in dl:
img = data['img'].cpu().numpy()
img = (img[0, :3].transpose((1, 2, 0)) * 255).astype(np.uint8)
mask = (data['mask'].cpu().numpy()[0][0] * 255).astype(np.uint8)
if load_instance_mask:
ins = (data['img'].cpu().numpy()[0][3] * 255).astype(np.uint8)
cv2.imshow('ins', ins)
dist = data['dist_weight'].cpu().numpy()[0][0]
dist = (dist / dist.max() * 255).astype(np.uint8)
cv2.imshow('img', img)
cv2.imshow('mask', mask)
cv2.imshow('dist_weight', dist)
cv2.waitKey(0)
# cv2.imwrite('') |