File size: 7,261 Bytes
395d300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# modified from https://github.com/SkyTNT/anime-segmentation/blob/main/train.py
import os

import argparse
import torch
import torch.nn.functional as F
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
import numpy as np
import cv2
from torch.cuda import amp

from utils.constants import DEFAULT_DEVICE
# from data_loader import create_training_datasets


import pytorch_lightning as pl
import warnings

from .isnet import ISNetDIS, ISNetGTEncoder
from .u2net import U2NET, U2NET_full, U2NET_full2, U2NET_lite2
from .modnet import MODNet

# warnings.filterwarnings("ignore")

def get_net(net_name):
    if net_name == "isnet":
        return ISNetDIS()
    elif net_name == "isnet_is":
        return ISNetDIS()
    elif net_name == "isnet_gt":
        return ISNetGTEncoder()
    elif net_name == "u2net":
        return U2NET_full2()
    elif net_name == "u2netl":
        return U2NET_lite2()
    elif net_name == "modnet":
        return MODNet()
    raise NotImplemented


def f1_torch(pred, gt):
    # micro F1-score
    pred = pred.float().view(pred.shape[0], -1)
    gt = gt.float().view(gt.shape[0], -1)
    tp1 = torch.sum(pred * gt, dim=1)
    tp_fp1 = torch.sum(pred, dim=1)
    tp_fn1 = torch.sum(gt, dim=1)
    pred = 1 - pred
    gt = 1 - gt
    tp2 = torch.sum(pred * gt, dim=1)
    tp_fp2 = torch.sum(pred, dim=1)
    tp_fn2 = torch.sum(gt, dim=1)
    precision = (tp1 + tp2) / (tp_fp1 + tp_fp2 + 0.0001)
    recall = (tp1 + tp2) / (tp_fn1 + tp_fn2 + 0.0001)
    f1 = (1 + 0.3) * precision * recall / (0.3 * precision + recall + 0.0001)
    return precision, recall, f1


class AnimeSegmentation(pl.LightningModule):

    def __init__(self, net_name):
        super().__init__()
        assert net_name in ["isnet_is", "isnet", "isnet_gt", "u2net", "u2netl", "modnet"]
        self.net = get_net(net_name)
        if net_name == "isnet_is":
            self.gt_encoder = get_net("isnet_gt")
            self.gt_encoder.requires_grad_(False)
        else:
            self.gt_encoder = None

    @classmethod
    def try_load(cls, net_name, ckpt_path, map_location=None):
        state_dict = torch.load(ckpt_path, map_location=map_location)
        if "epoch" in state_dict:
            return cls.load_from_checkpoint(ckpt_path, net_name=net_name, map_location=map_location)
        else:
            model = cls(net_name)
            if any([k.startswith("net.") for k, v in state_dict.items()]):
                model.load_state_dict(state_dict)
            else:
                model.net.load_state_dict(state_dict)
            return model

    def configure_optimizers(self):
        optimizer = optim.Adam(self.net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
        return optimizer

    def forward(self, x):
        if isinstance(self.net, ISNetDIS):
            return self.net(x)[0][0].sigmoid()
        if isinstance(self.net, ISNetGTEncoder):
            return self.net(x)[0][0].sigmoid()
        elif isinstance(self.net, U2NET):
            return self.net(x)[0].sigmoid()
        elif isinstance(self.net, MODNet):
            return self.net(x, True)[2]
        raise NotImplemented

    def training_step(self, batch, batch_idx):
        images, labels = batch["image"], batch["label"]
        if isinstance(self.net, ISNetDIS):
            ds, dfs = self.net(images)
            loss_args = [ds, dfs, labels]
        elif isinstance(self.net, ISNetGTEncoder):
            ds = self.net(labels)[0]
            loss_args = [ds, labels]
        elif isinstance(self.net, U2NET):
            ds = self.net(images)
            loss_args = [ds, labels]
        elif isinstance(self.net, MODNet):
            trimaps = batch["trimap"]
            pred_semantic, pred_detail, pred_matte = self.net(images, False)
            loss_args = [pred_semantic, pred_detail, pred_matte, images, trimaps, labels]
        else:
            raise NotImplemented
        if self.gt_encoder is not None:
            fs = self.gt_encoder(labels)[1]
            loss_args.append(fs)

        loss0, loss = self.net.compute_loss(loss_args)
        self.log_dict({"train/loss": loss, "train/loss_tar": loss0})
        return loss

    def validation_step(self, batch, batch_idx):
        images, labels = batch["image"], batch["label"]
        if isinstance(self.net, ISNetGTEncoder):
            preds = self.forward(labels)
        else:
            preds = self.forward(images)
        pre, rec, f1, = f1_torch(preds.nan_to_num(nan=0, posinf=1, neginf=0), labels)
        mae_m = F.l1_loss(preds, labels, reduction="mean")
        pre_m = pre.mean()
        rec_m = rec.mean()
        f1_m = f1.mean()
        self.log_dict({"val/precision": pre_m, "val/recall": rec_m, "val/f1": f1_m, "val/mae": mae_m}, sync_dist=True)


def get_gt_encoder(train_dataloader, val_dataloader, opt):
    print("---start train ground truth encoder---")
    gt_encoder = AnimeSegmentation("isnet_gt")
    trainer = Trainer(precision=32 if opt.fp32 else 16, accelerator=opt.accelerator,
                      devices=opt.devices, max_epochs=opt.gt_epoch,
                      benchmark=opt.benchmark, accumulate_grad_batches=opt.acc_step,
                      check_val_every_n_epoch=opt.val_epoch, log_every_n_steps=opt.log_step,
                      strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
                      )
    trainer.fit(gt_encoder, train_dataloader, val_dataloader)
    return gt_encoder.net


def load_refinenet(refine_method = 'animeseg', device: str = None) -> AnimeSegmentation:
    if device is None:
        device = DEFAULT_DEVICE
    if refine_method == 'animeseg':
        model = AnimeSegmentation.try_load('isnet_is', 'models/anime-seg/isnetis.ckpt', device)
    elif refine_method == 'refinenet_isnet':
        model = ISNetDIS(in_ch=4)
        sd = torch.load('models/AnimeInstanceSegmentation/refine_last.ckpt', map_location='cpu')
        # sd = torch.load('models/AnimeInstanceSegmentation/refine_noweight_dist.ckpt', map_location='cpu')
        # sd = torch.load('models/AnimeInstanceSegmentation/refine_f3loss.ckpt', map_location='cpu')
        model.load_state_dict(sd)
    else:
        raise NotImplementedError
    return model.eval().to(device)
    
def get_mask(model, input_img, use_amp=True, s=640):
    h0, w0 = h, w = input_img.shape[0], input_img.shape[1]
    if h > w:
        h, w = s, int(s * w / h)
    else:
        h, w = int(s * h / w), s
    ph, pw = s - h, s - w
    tmpImg = np.zeros([s, s, 3], dtype=np.float32)
    tmpImg[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(input_img, (w, h)) / 255
    tmpImg = tmpImg.transpose((2, 0, 1))
    tmpImg = torch.from_numpy(tmpImg).unsqueeze(0).type(torch.FloatTensor).to(model.device)
    with torch.no_grad():
        if use_amp:
            with amp.autocast():
                pred = model(tmpImg)
            pred = pred.to(dtype=torch.float32)
        else:
            pred = model(tmpImg)
        pred = pred[0, :, ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
        pred = cv2.resize(pred.cpu().numpy().transpose((1, 2, 0)), (w0, h0))[:, :, np.newaxis]
        return pred