Spaces:
Running
Running
File size: 15,055 Bytes
395d300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import itertools
import os.path as osp
import tempfile
from collections import OrderedDict
from typing import Dict, List, Optional, Sequence, Union
import numpy as np
import torch
from mmengine.evaluator import BaseMetric
from mmengine.fileio import FileClient, dump, load
from mmengine.logging import MMLogger
from terminaltables import AsciiTable
from mmdet.datasets.api_wrappers import COCO, COCOeval
from mmdet.registry import METRICS
from mmdet.structures.mask import encode_mask_results
# from ..functional import eval_recalls
from mmdet.evaluation.metrics import CocoMetric
@METRICS.register_module()
class AnimeMangaMetric(CocoMetric):
def __init__(self,
manga109_annfile=None,
animeins_annfile=None,
ann_file: Optional[str] = None,
metric: Union[str, List[str]] = 'bbox',
classwise: bool = False,
proposal_nums: Sequence[int] = (100, 300, 1000),
iou_thrs: Optional[Union[float, Sequence[float]]] = None,
metric_items: Optional[Sequence[str]] = None,
format_only: bool = False,
outfile_prefix: Optional[str] = None,
file_client_args: dict = dict(backend='disk'),
collect_device: str = 'cpu',
prefix: Optional[str] = None,
sort_categories: bool = False) -> None:
super().__init__(ann_file, metric, classwise, proposal_nums, iou_thrs, metric_items, format_only, outfile_prefix, file_client_args, collect_device, prefix, sort_categories)
self.manga109_img_ids = set()
if manga109_annfile is not None:
with self.file_client.get_local_path(manga109_annfile) as local_path:
self._manga109_coco_api = COCO(local_path)
if sort_categories:
# 'categories' list in objects365_train.json and
# objects365_val.json is inconsistent, need sort
# list(or dict) before get cat_ids.
cats = self._manga109_coco_api.cats
sorted_cats = {i: cats[i] for i in sorted(cats)}
self._manga109_coco_api.cats = sorted_cats
categories = self._manga109_coco_api.dataset['categories']
sorted_categories = sorted(
categories, key=lambda i: i['id'])
self._manga109_coco_api.dataset['categories'] = sorted_categories
self.manga109_img_ids = set(self._manga109_coco_api.get_img_ids())
else:
self._manga109_coco_api = None
self.animeins_img_ids = set()
if animeins_annfile is not None:
with self.file_client.get_local_path(animeins_annfile) as local_path:
self._animeins_coco_api = COCO(local_path)
if sort_categories:
# 'categories' list in objects365_train.json and
# objects365_val.json is inconsistent, need sort
# list(or dict) before get cat_ids.
cats = self._animeins_coco_api.cats
sorted_cats = {i: cats[i] for i in sorted(cats)}
self._animeins_coco_api.cats = sorted_cats
categories = self._animeins_coco_api.dataset['categories']
sorted_categories = sorted(
categories, key=lambda i: i['id'])
self._animeins_coco_api.dataset['categories'] = sorted_categories
self.animeins_img_ids = set(self._animeins_coco_api.get_img_ids())
else:
self._animeins_coco_api = None
if self._animeins_coco_api is not None:
self._coco_api = self._animeins_coco_api
else:
self._coco_api = self._manga109_coco_api
def compute_metrics(self, results: list) -> Dict[str, float]:
# split gt and prediction list
gts, preds = zip(*results)
manga109_gts, animeins_gts = [], []
manga109_preds, animeins_preds = [], []
for gt, pred in zip(gts, preds):
if gt['img_id'] in self.manga109_img_ids:
manga109_gts.append(gt)
manga109_preds.append(pred)
else:
animeins_gts.append(gt)
animeins_preds.append(pred)
tmp_dir = None
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'results')
else:
outfile_prefix = self.outfile_prefix
eval_results = OrderedDict()
if len(manga109_gts) > 0:
metrics = []
for m in self.metrics:
if m != 'segm':
metrics.append(m)
self.cat_ids = self._manga109_coco_api.get_cat_ids(cat_names=self.dataset_meta['classes'])
self.img_ids = self._manga109_coco_api.get_img_ids()
rst = self._compute_metrics(metrics, self._manga109_coco_api, manga109_preds, outfile_prefix, tmp_dir)
for key, item in rst.items():
eval_results['manga109_'+key] = item
if len(animeins_gts) > 0:
self.cat_ids = self._animeins_coco_api.get_cat_ids(cat_names=self.dataset_meta['classes'])
self.img_ids = self._animeins_coco_api.get_img_ids()
rst = self._compute_metrics(self.metrics, self._animeins_coco_api, animeins_preds, outfile_prefix, tmp_dir)
for key, item in rst.items():
eval_results['animeins_'+key] = item
return eval_results
def results2json(self, results: Sequence[dict],
outfile_prefix: str) -> dict:
"""Dump the detection results to a COCO style json file.
There are 3 types of results: proposals, bbox predictions, mask
predictions, and they have different data types. This method will
automatically recognize the type, and dump them to json files.
Args:
results (Sequence[dict]): Testing results of the
dataset.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.bbox.json", "somepath/xxx.segm.json",
"somepath/xxx.proposal.json".
Returns:
dict: Possible keys are "bbox", "segm", "proposal", and
values are corresponding filenames.
"""
bbox_json_results = []
segm_json_results = [] if 'masks' in results[0] else None
for idx, result in enumerate(results):
image_id = result.get('img_id', idx)
labels = result['labels']
bboxes = result['bboxes']
scores = result['scores']
# bbox results
for i, label in enumerate(labels):
data = dict()
data['image_id'] = image_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(scores[i])
data['category_id'] = self.cat_ids[label]
bbox_json_results.append(data)
if segm_json_results is None:
continue
# segm results
masks = result['masks']
mask_scores = result.get('mask_scores', scores)
for i, label in enumerate(labels):
data = dict()
data['image_id'] = image_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(mask_scores[i])
data['category_id'] = self.cat_ids[label]
if isinstance(masks[i]['counts'], bytes):
masks[i]['counts'] = masks[i]['counts'].decode()
data['segmentation'] = masks[i]
segm_json_results.append(data)
logger: MMLogger = MMLogger.get_current_instance()
logger.info('dumping predictions ... ')
result_files = dict()
result_files['bbox'] = f'{outfile_prefix}.bbox.json'
result_files['proposal'] = f'{outfile_prefix}.bbox.json'
dump(bbox_json_results, result_files['bbox'])
if segm_json_results is not None:
result_files['segm'] = f'{outfile_prefix}.segm.json'
dump(segm_json_results, result_files['segm'])
return result_files
def _compute_metrics(self, metrics, tgt_api, preds, outfile_prefix, tmp_dir):
logger: MMLogger = MMLogger.get_current_instance()
result_files = self.results2json(preds, outfile_prefix)
eval_results = OrderedDict()
if self.format_only:
logger.info('results are saved in '
f'{osp.dirname(outfile_prefix)}')
return eval_results
for metric in metrics:
logger.info(f'Evaluating {metric}...')
# TODO: May refactor fast_eval_recall to an independent metric?
# fast eval recall
if metric == 'proposal_fast':
ar = self.fast_eval_recall(
preds, self.proposal_nums, self.iou_thrs, logger=logger)
log_msg = []
for i, num in enumerate(self.proposal_nums):
eval_results[f'AR@{num}'] = ar[i]
log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
log_msg = ''.join(log_msg)
logger.info(log_msg)
continue
# evaluate proposal, bbox and segm
iou_type = 'bbox' if metric == 'proposal' else metric
if metric not in result_files:
raise KeyError(f'{metric} is not in results')
try:
predictions = load(result_files[metric])
if iou_type == 'segm':
# Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331 # noqa
# When evaluating mask AP, if the results contain bbox,
# cocoapi will use the box area instead of the mask area
# for calculating the instance area. Though the overall AP
# is not affected, this leads to different
# small/medium/large mask AP results.
for x in predictions:
x.pop('bbox')
coco_dt = tgt_api.loadRes(predictions)
except IndexError:
logger.error(
'The testing results of the whole dataset is empty.')
break
coco_eval = COCOeval(tgt_api, coco_dt, iou_type)
coco_eval.params.catIds = self.cat_ids
coco_eval.params.imgIds = self.img_ids
coco_eval.params.maxDets = list(self.proposal_nums)
coco_eval.params.iouThrs = self.iou_thrs
# mapping of cocoEval.stats
coco_metric_names = {
'mAP': 0,
'mAP_50': 1,
'mAP_75': 2,
'mAP_s': 3,
'mAP_m': 4,
'mAP_l': 5,
'AR@100': 6,
'AR@300': 7,
'AR@1000': 8,
'AR_s@1000': 9,
'AR_m@1000': 10,
'AR_l@1000': 11
}
metric_items = self.metric_items
if metric_items is not None:
for metric_item in metric_items:
if metric_item not in coco_metric_names:
raise KeyError(
f'metric item "{metric_item}" is not supported')
if metric == 'proposal':
coco_eval.params.useCats = 0
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if metric_items is None:
metric_items = [
'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000',
'AR_m@1000', 'AR_l@1000'
]
for item in metric_items:
val = float(
f'{coco_eval.stats[coco_metric_names[item]]:.3f}')
eval_results[item] = val
else:
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if self.classwise: # Compute per-category AP
# Compute per-category AP
# from https://github.com/facebookresearch/detectron2/
precisions = coco_eval.eval['precision']
# precision: (iou, recall, cls, area range, max dets)
assert len(self.cat_ids) == precisions.shape[2]
results_per_category = []
for idx, cat_id in enumerate(self.cat_ids):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
nm = tgt_api.loadCats(cat_id)[0]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
if precision.size:
ap = np.mean(precision)
else:
ap = float('nan')
results_per_category.append(
(f'{nm["name"]}', f'{round(ap, 3)}'))
eval_results[f'{nm["name"]}_precision'] = round(ap, 3)
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(
itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(*[
results_flatten[i::num_columns]
for i in range(num_columns)
])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('\n' + table.table)
if metric_items is None:
metric_items = [
'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
]
for metric_item in metric_items:
key = f'{metric}_{metric_item}'
val = coco_eval.stats[coco_metric_names[metric_item]]
eval_results[key] = float(f'{round(val, 3)}')
ap = coco_eval.stats[:6]
logger.info(f'{metric}_mAP_copypaste: {ap[0]:.3f} '
f'{ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} '
f'{ap[4]:.3f} {ap[5]:.3f}')
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results |