File size: 14,850 Bytes
395d300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import torch
import numpy as np
from tqdm import tqdm
from omegaconf import OmegaConf
import safetensors
import os
import einops
import cv2
from PIL import Image, ImageFilter, ImageOps
from utils.io_utils import resize_pad2divisior
import os
from utils.io_utils import submit_request, img2b64
import json
# Debug by Francis
# from ldm.util import instantiate_from_config
# from ldm.models.diffusion.ddpm import LatentDiffusion
# from ldm.models.diffusion.ddim import DDIMSampler
# from ldm.modules.diffusionmodules.util import noise_like
import io
import base64
from requests.auth import HTTPBasicAuth

# Debug by Francis
# def create_model(config_path):
#     config = OmegaConf.load(config_path)
#     model = instantiate_from_config(config.model).cpu()
#     return model
#
# def get_state_dict(d):
#     return d.get('state_dict', d)
#
# def load_state_dict(ckpt_path, location='cpu'):
#     _, extension = os.path.splitext(ckpt_path)
#     if extension.lower() == ".safetensors":
#         import safetensors.torch
#         state_dict = safetensors.torch.load_file(ckpt_path, device=location)
#     else:
#         state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
#     state_dict = get_state_dict(state_dict)
#     return state_dict
#
#
# def load_ldm_sd(model, path) :
#     if path.endswith('.safetensor') :
#         sd = safetensors.torch.load_file(path)
#     else :
#         sd = load_state_dict(path)
#     model.load_state_dict(sd, strict = False)
#
# def fill_mask_input(image, mask):
#     """fills masked regions with colors from image using blur. Not extremely effective."""
#
#     image_mod = Image.new('RGBA', (image.width, image.height))
#
#     image_masked = Image.new('RGBa', (image.width, image.height))
#     image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
#
#     image_masked = image_masked.convert('RGBa')
#
#     for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
#         blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
#         for _ in range(repeats):
#             image_mod.alpha_composite(blurred)
#
#     return image_mod.convert("RGB")
#
#
# def get_inpainting_image_condition(model, image, mask) :
#     conditioning_mask = np.array(mask.convert("L"))
#     conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
#     conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
#     conditioning_mask = torch.round(conditioning_mask)
#     conditioning_mask = conditioning_mask.to(device=image.device, dtype=image.dtype)
#     conditioning_image = torch.lerp(
#         image,
#         image * (1.0 - conditioning_mask),
#         1
#     )
#     conditioning_image = model.get_first_stage_encoding(model.encode_first_stage(conditioning_image))
#     conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=conditioning_image.shape[-2:])
#     conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
#     image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
#     return image_conditioning
#
#
# class GuidedLDM(LatentDiffusion):
#     def __init__(self,  *args, **kwargs):
#         super().__init__(*args, **kwargs)
#
#     @torch.no_grad()
#     def img2img_inpaint(
#         self,
#         image: Image.Image,
#         c_text: str,
#         uc_text: str,
#         mask: Image.Image,
#         ddim_steps = 50,
#         mask_blur: int = 0,
#         use_cuda: bool = True,
#         **kwargs) -> Image.Image :
#         ddim_sampler = GuidedDDIMSample(self)
#         if use_cuda :
#             self.cond_stage_model.cuda()
#             self.first_stage_model.cuda()
#         c_text = self.get_learned_conditioning([c_text])
#         uc_text = self.get_learned_conditioning([uc_text])
#         cond = {"c_crossattn": [c_text]}
#         uc_cond = {"c_crossattn": [uc_text]}
#
#         if use_cuda :
#             device = torch.device('cuda:0')
#         else :
#             device = torch.device('cpu')
#
#         image_mask = mask
#         image_mask = image_mask.convert('L')
#         image_mask = image_mask.filter(ImageFilter.GaussianBlur(mask_blur))
#         latent_mask = image_mask
#         # image = fill_mask_input(image, latent_mask)
#         # image.save('image_fill.png')
#         image = np.array(image).astype(np.float32) / 127.5 - 1.0
#         image = np.moveaxis(image, 2, 0)
#         image = torch.from_numpy(image).to(device)[None]
#         init_latent = self.get_first_stage_encoding(self.encode_first_stage(image))
#         init_mask = latent_mask
#         latmask = init_mask.convert('RGB').resize((init_latent.shape[3], init_latent.shape[2]))
#         latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
#         latmask = latmask[0]
#         latmask = np.around(latmask)
#         latmask = np.tile(latmask[None], (4, 1, 1))
#         nmask = torch.asarray(latmask).to(init_latent.device).float()
#         init_latent = (1 - nmask) * init_latent + nmask * torch.randn_like(init_latent)
#
#         denoising_strength = 1
#         if self.model.conditioning_key == 'hybrid' :
#             image_cdt = get_inpainting_image_condition(self, image, image_mask)
#             cond["c_concat"] = [image_cdt]
#             uc_cond["c_concat"] = [image_cdt]
#
#         steps = ddim_steps
#         t_enc = int(min(denoising_strength, 0.999) * steps)
#         eta = 0
#
#         noise = torch.randn_like(init_latent)
#         ddim_sampler.make_schedule(ddim_num_steps=steps, ddim_eta=eta, ddim_discretize="uniform", verbose=False)
#         x1 = ddim_sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * int(init_latent.shape[0])).to(device), noise=noise)
#
#         if use_cuda :
#             self.cond_stage_model.cpu()
#             self.first_stage_model.cpu()
#
#         if use_cuda :
#             self.model.cuda()
#         decoded = ddim_sampler.decode(x1, cond,t_enc,init_latent=init_latent,nmask=nmask,unconditional_guidance_scale=7,unconditional_conditioning=uc_cond)
#         if use_cuda :
#             self.model.cpu()
#
#         if mask is not None :
#             decoded = init_latent * (1 - nmask) + decoded * nmask
#
#         if use_cuda :
#             self.first_stage_model.cuda()
#         with torch.cuda.amp.autocast(enabled=False):
#             x_samples = self.decode_first_stage(decoded.to(torch.float32))
#         if use_cuda :
#             self.first_stage_model.cpu()
#         return torch.clip(x_samples, -1, 1)
#
#
#
# class GuidedDDIMSample(DDIMSampler) :
#     def __init__(self, *args, **kwargs):
#         super().__init__(*args, **kwargs)
#
#     @torch.no_grad()
#     def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
#                       temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
#                       unconditional_guidance_scale=1., unconditional_conditioning=None,
#                       dynamic_threshold=None):
#         b, *_, device = *x.shape, x.device
#
#         if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
#             model_output = self.model.apply_model(x, t, c)
#         else:
#             x_in = torch.cat([x] * 2)
#             t_in = torch.cat([t] * 2)
#             if isinstance(c, dict):
#                 assert isinstance(unconditional_conditioning, dict)
#                 c_in = dict()
#                 for k in c:
#                     if isinstance(c[k], list):
#                         c_in[k] = [torch.cat([
#                             unconditional_conditioning[k][i],
#                             c[k][i]]) for i in range(len(c[k]))]
#                     else:
#                         c_in[k] = torch.cat([
#                                 unconditional_conditioning[k],
#                                 c[k]])
#             elif isinstance(c, list):
#                 c_in = list()
#                 assert isinstance(unconditional_conditioning, list)
#                 for i in range(len(c)):
#                     c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
#             else:
#                 c_in = torch.cat([unconditional_conditioning, c])
#             model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
#             model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
#
#         e_t = model_output
#
#         alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
#         alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
#         sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
#         sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
#         # select parameters corresponding to the currently considered timestep
#         a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
#         a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
#         sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
#         sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
#
#         # current prediction for x_0
#         pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
#
#         # direction pointing to x_t
#         dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
#         noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
#         if noise_dropout > 0.:
#             noise = torch.nn.functional.dropout(noise, p=noise_dropout)
#         x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
#         return x_prev, pred_x0
#
#     @torch.no_grad()
#     def decode(self, x_latent, cond, t_start, init_latent=None, nmask=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
#                use_original_steps=False, callback=None):
#
#         timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
#         total_steps = len(timesteps)
#         timesteps = timesteps[:t_start]
#
#         time_range = np.flip(timesteps)
#         total_steps = timesteps.shape[0]
#         print(f"Running Guided DDIM Sampling with {len(timesteps)} timesteps, t_start={t_start}")
#         iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
#         x_dec = x_latent
#         for i, step in enumerate(iterator):
#             p = (i + (total_steps - t_start) + 1) / (total_steps)
#             index = total_steps - i - 1
#             ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
#             if nmask is not None :
#                 noised_input = self.model.q_sample(init_latent.to(x_latent.device), ts.to(x_latent.device))
#                 x_dec = (1 - nmask) * noised_input + nmask * x_dec
#             x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
#                                           unconditional_guidance_scale=unconditional_guidance_scale,
#                                           unconditional_conditioning=unconditional_conditioning)
#             if callback: callback(i)
#         return x_dec
#    
#
# def ldm_inpaint(model, img, mask, inpaint_size=720, pos_prompt='', neg_prompt = '', use_cuda=True):
#         img_original = np.copy(img)
#         im_h, im_w = img.shape[:2]
#         img_resized, (pad_h, pad_w) = resize_pad2divisior(img, inpaint_size)
#
#         mask_original = np.copy(mask)
#         mask_original[mask_original < 127] = 0
#         mask_original[mask_original >= 127] = 1
#         mask_original = mask_original[:, :, None]
#         mask, _ = resize_pad2divisior(mask, inpaint_size)
#
#         # cv2.imwrite('img_resized.png', img_resized)
#         # cv2.imwrite('mask_resized.png', mask)
#
#
#         if use_cuda :
#             with torch.autocast(enabled = True, device_type = 'cuda') :
#                 img = model.img2img_inpaint(
#                     image = Image.fromarray(img_resized),
#                     c_text = pos_prompt,
#                     uc_text = neg_prompt,
#                     mask = Image.fromarray(mask),
#                     use_cuda = True
#                     )
#         else :
#             img = model.img2img_inpaint(
#                 image = Image.fromarray(img_resized),
#                 c_text = pos_prompt,
#                 uc_text = neg_prompt,
#                 mask = Image.fromarray(mask),
#                 use_cuda = False
#                 )
#
#         img_inpainted = (einops.rearrange(img, '1 c h w -> h w c').cpu().numpy() * 127.5 + 127.5).astype(np.uint8)
#         if pad_h != 0:
#             img_inpainted = img_inpainted[:-pad_h]
#         if pad_w != 0:
#             img_inpainted = img_inpainted[:, :-pad_w]
#
#
#         if img_inpainted.shape[0] != im_h or img_inpainted.shape[1] != im_w:
#             img_inpainted = cv2.resize(img_inpainted, (im_w, im_h), interpolation = cv2.INTER_LINEAR)
#         ans = img_inpainted * mask_original + img_original * (1 - mask_original)
#         ans = img_inpainted
#         return ans




import requests
from PIL import Image
def ldm_inpaint_webui(
        img, mask, resolution: int, url: str, prompt: str = '', neg_prompt: str = '',
        **inpaint_ldm_options):
    if isinstance(img, np.ndarray):
        img = Image.fromarray(img)

    im_h, im_w = img.height, img.width

    if img.height > img.width:
        W = resolution
        H = (img.height / img.width * resolution) // 32 * 32
        H = int(H)
    else:
        H = resolution
        W = (img.width / img.height * resolution) // 32 * 32 
        W = int(W)

    auth = None
    if 'username' in inpaint_ldm_options:
        username = inpaint_ldm_options.pop('username')
        password = inpaint_ldm_options.pop('password')
        auth = HTTPBasicAuth(username, password)

    img_b64 = img2b64(img)
    mask_b64 = img2b64(mask)
    data = {
        "init_images": [img_b64],
        "mask": mask_b64,
        "prompt": prompt,
        "negative_prompt": neg_prompt,
        "width": W,
        "height": H,
        **inpaint_ldm_options,
    }
    data = json.dumps(data)

    response = submit_request(url, data, auth=auth)

    inpainted_b64 = response.json()['images'][0]
    inpainted = Image.open(io.BytesIO(base64.b64decode(inpainted_b64)))
    if inpainted.height != im_h or inpainted.width != im_w:
        inpainted = inpainted.resize((im_w, im_h), resample=Image.Resampling.LANCZOS)
    inpainted = np.array(inpainted)
    return inpainted