Spaces:
Running
Running
File size: 11,187 Bytes
395d300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import numpy as np
from typing import List, Union, Tuple, Dict
import random
from PIL import Image
import cv2
import os.path as osp
from tqdm import tqdm
from panopticapi.utils import rgb2id, id2rgb
from time import time
import traceback
from utils.io_utils import bbox_overlap_area
from utils.logger import LOGGER
from utils.constants import COLOR_PALETTE
class PartitionTree:
def __init__(self, bleft: int, btop: int, bright: int, bbottom: int, parent = None) -> None:
self.left: PartitionTree = None
self.right: PartitionTree = None
self.top: PartitionTree = None
self.bottom: PartitionTree = None
if bright < bleft:
bright = bleft
if bbottom < btop:
bbottom = btop
self.bleft = bleft
self.bright = bright
self.btop = btop
self.bbottom = bbottom
self.parent: PartitionTree = parent
def is_leaf(self):
return self.left is None
def new_partition(self, new_rect: List):
self.left = PartitionTree(self.bleft, self.btop, new_rect[0], self.bbottom, self)
self.top = PartitionTree(self.bleft, self.btop, self.bright, new_rect[1], self)
self.right = PartitionTree(new_rect[2], self.btop, self.bright, self.bbottom, self)
self.bottom = PartitionTree(self.bleft, new_rect[3], self.bright, self.bbottom, self)
if self.parent is not None:
self.root_update_rect(new_rect)
def root_update_rect(self, rect):
root = self.get_root()
root.update_child_rect(rect)
def update_child_rect(self, rect: List):
if self.is_leaf():
self.update_from_rect(rect)
else:
self.left.update_child_rect(rect)
self.right.update_child_rect(rect)
self.top.update_child_rect(rect)
self.bottom.update_child_rect(rect)
def get_root(self):
if self.parent is not None:
return self.parent.get_root()
else:
return self
def update_from_rect(self, rect: List):
if not self.is_leaf():
return
ix = min(self.bright, rect[2]) - max(self.bleft, rect[0])
iy = min(self.bbottom, rect[3]) - max(self.btop, rect[1])
if not (ix > 0 and iy > 0):
return
new_ltrb0 = np.array([self.bleft, self.btop, self.bright, self.bbottom])
new_ltrb1 = new_ltrb0.copy()
if rect[0] > self.bleft and rect[0] < self.bright:
new_ltrb0[2] = rect[0]
else:
new_ltrb0[0] = rect[2]
if rect[1] > self.btop and rect[1] < self.bbottom:
new_ltrb1[3]= rect[1]
else:
new_ltrb1[1] = rect[3]
if (new_ltrb0[2:] - new_ltrb0[:2]).prod() > (new_ltrb1[2:] - new_ltrb1[:2]).prod():
self.bleft, self.btop, self.bright, self.bbottom = new_ltrb0
else:
self.bleft, self.btop, self.bright, self.bbottom = new_ltrb1
@property
def width(self) -> int:
return self.bright - self.bleft
@property
def height(self) -> int:
return self.bbottom - self.btop
def prefer_partition(self, tgt_h: int, tgt_w: int):
if self.is_leaf():
return self, min(self.width / tgt_w, 1.2) * min(self.height / tgt_h, 1.2)
else:
lp, ls = self.left.prefer_partition(tgt_h, tgt_w)
rp, rs = self.right.prefer_partition(tgt_h, tgt_w)
tp, ts = self.top.prefer_partition(tgt_h, tgt_w)
bp, bs = self.bottom.prefer_partition(tgt_h, tgt_w)
preferp = [(p, s) for s, p in sorted(zip([ls, rs, ts, bs],[lp, rp, tp, bp]), key=lambda pair: pair[0], reverse=True)][0]
return preferp
def new_random_pos(self, fg_h: int, fg_w: int, im_h: int, im_w: int, random_sample: bool = False):
extx, exty = int(fg_w / 3), int(fg_h / 3)
extxb, extyb = int(fg_w / 10), int(fg_h / 10)
region_w, region_h = self.width + extx, self.height + exty
downscale_ratio = max(min(region_w / fg_w, region_h / fg_h), 0.8)
if downscale_ratio < 1:
fg_h = int(downscale_ratio * fg_h)
fg_w = int(downscale_ratio * fg_w)
max_x, max_y = self.bright + extx - fg_w, self.bbottom + exty - fg_h
max_x = min(im_w+extxb-fg_w, max_x)
max_y = min(im_h+extyb-fg_h, max_y)
min_x = max(min(self.bright + extx - fg_w, self.bleft - extx), -extx)
min_x = max(-extxb, min_x)
min_y = max(min(self.bbottom + exty - fg_h, self.btop - exty), -exty)
min_y = max(-extyb, min_y)
px, py = min_x, min_y
if min_x < max_x:
if random_sample:
px = random.randint(min_x, max_x)
else:
px = int((min_x + max_x) / 2)
if min_y < max_y:
if random_sample:
py = random.randint(min_y, max_y)
else:
py = int((min_y + max_y) / 2)
return px, py, downscale_ratio
def drawpartition(self, image: np.ndarray, color = None):
if color is None:
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
if not self.is_leaf():
cv2.rectangle(image, (self.bleft, self.btop), (self.bright, self.bbottom), color, 2)
if not self.is_leaf():
c = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
self.left.drawpartition(image, c)
self.right.drawpartition(image, c)
self.top.drawpartition(image, c)
self.bottom.drawpartition(image, c)
def paste_one_fg(fg_pil: Image, bg: Image, segments: np.ndarray, px: int, py: int, seg_color: Tuple, cal_area=True):
fg_h, fg_w = fg_pil.height, fg_pil.width
im_h, im_w = bg.height, bg.width
bg.paste(fg_pil, (px, py), mask=fg_pil)
bgx1, bgx2, bgy1, bgy2 = px, px+fg_w, py, py+fg_h
fgx1, fgx2, fgy1, fgy2 = 0, fg_w, 0, fg_h
if bgx1 < 0:
fgx1 = -bgx1
bgx1 = 0
if bgy1 < 0:
fgy1 = -bgy1
bgy1 = 0
if bgx2 > im_w:
fgx2 = im_w - bgx2
bgx2 = im_w
if bgy2 > im_h:
fgy2 = im_h - bgy2
bgy2 = im_h
fg_mask = np.array(fg_pil)[fgy1: fgy2, fgx1: fgx2, 3] > 30
segments[bgy1: bgy2, bgx1: bgx2][np.where(fg_mask)] = seg_color
if cal_area:
area = fg_mask.sum()
else:
area = 1
bbox = [bgx1, bgy1, bgx2-bgx1, bgy2-bgy1]
return area, bbox, [bgx1, bgy1, bgx2, bgy2]
def partition_paste(fg_list, bg: Image):
segments_info = []
fg_list.sort(key = lambda x: x['image'].shape[0] * x['image'].shape[1], reverse=True)
pnode: PartitionTree = None
im_h, im_w = bg.height, bg.width
ptree = PartitionTree(0, 0, bg.width, bg.height)
segments = np.zeros((im_h, im_w, 3), np.uint8)
for ii, fg_dict in enumerate(fg_list):
fg = fg_dict['image']
fg_h, fg_w = fg.shape[:2]
pnode, _ = ptree.prefer_partition(fg_h, fg_w)
px, py, downscale_ratio = pnode.new_random_pos(fg_h, fg_w, im_h, im_w, True)
fg_pil = Image.fromarray(fg)
if downscale_ratio < 1:
fg_pil = fg_pil.resize((int(fg_w * downscale_ratio), int(fg_h * downscale_ratio)), resample=Image.Resampling.LANCZOS)
# fg_h, fg_w = fg_pil.height, fg_pil.width
seg_color = COLOR_PALETTE[ii]
area, bbox, xyxy = paste_one_fg(fg_pil, bg, segments, px,py, seg_color, cal_area=False)
pnode.new_partition(xyxy)
segments_info.append({
'id': rgb2id(seg_color),
'bbox': bbox,
'area': area
})
return segments_info, segments
# if downscale_ratio < 1:
# fg_pil = fg_pil.resize((int(fg_w * downscale_ratio), int(fg_h * downscale_ratio)), resample=Image.Resampling.LANCZOS)
# fg_h, fg_w = fg_pil.height, fg_pil.width
def gen_fg_regbboxes(fg_list: List[Dict], tgt_size: int, min_overlap=0.15, max_overlap=0.8):
def _sample_y(h):
y = (tgt_size - h) // 2
if y > 0:
yrange = min(y, h // 4)
y += random.randint(-yrange, yrange)
return y
else:
return 0
shape_list = []
depth_list = []
for fg_dict in fg_list:
shape_list.append(fg_dict['image'].shape[:2])
shape_list = np.array(shape_list)
depth_list = np.random.random(len(fg_list))
depth_list[shape_list[..., 1] > 0.6 * tgt_size] += 1
# num_fg = len(fg_list)
# grid_sample = random.random() < 0.4 or num_fg > 6
# grid_sample = grid_sample and num_fg < 9 and num_fg > 3
# grid_sample = False
# if grid_sample:
# grid_pos = np.arange(9)
# np.random.shuffle(grid_pos)
# grid_pos = grid_pos[: num_fg]
# grid_x = grid_pos % 3
# grid_y = grid_pos // 3
# else:
pos_list = [[0, _sample_y(shape_list[0][0])]]
pre_overlap = 0
for ii, ((h, w), d) in enumerate(zip(shape_list[1:], depth_list[1:])):
(preh, prew), predepth, (prex, prey) = shape_list[ii], depth_list[ii], pos_list[ii]
isfg = d < predepth
y = _sample_y(h)
x = prex+prew
if isfg:
min_x = max_x = x
if pre_overlap < max_overlap:
min_x -= (max_overlap - pre_overlap) * prew
min_x = int(min_x)
if pre_overlap < min_overlap:
max_x -= (min_overlap - pre_overlap) * prew
max_x = int(max_x)
x = random.randint(min_x, max_x)
pre_overlap = 0
else:
overlap = random.uniform(min_overlap, max_overlap)
x -= int(overlap * w)
area = h * w
overlap_area = bbox_overlap_area([x, y, w, h], [prex, prey, prew, preh])
pre_overlap = overlap_area / area
pos_list.append([x, y])
pos_list = np.array(pos_list)
last_x2 = pos_list[-1][0] + shape_list[-1][1]
valid_shiftx = tgt_size - last_x2
if valid_shiftx > 0:
shiftx = random.randint(0, valid_shiftx)
pos_list[:, 0] += shiftx
else:
pos_list[:, 0] += valid_shiftx // 2
for pos, fg_dict, depth in zip(pos_list, fg_list, depth_list):
fg_dict['pos'] = pos
fg_dict['depth'] = depth
fg_list.sort(key=lambda x: x['depth'], reverse=True)
def regular_paste(fg_list, bg: Image, regen_bboxes=False):
segments_info = []
im_h, im_w = bg.height, bg.width
if regen_bboxes:
random.shuffle(fg_list)
gen_fg_regbboxes(fg_list, im_h)
segments = np.zeros((im_h, im_w, 3), np.uint8)
for ii, fg_dict in enumerate(fg_list):
fg = fg_dict['image']
px, py = fg_dict.pop('pos')
fg_pil = Image.fromarray(fg)
seg_color = COLOR_PALETTE[ii]
area, bbox, xyxy = paste_one_fg(fg_pil, bg, segments, px,py, seg_color, cal_area=True)
segments_info.append({
'id': rgb2id(seg_color),
'bbox': bbox,
'area': area
})
return segments_info, segments |