File size: 10,084 Bytes
395d300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

import numpy as np
from typing import List, Union, Tuple
import torch
from utils.constants import COLOR_PALETTE
from utils.constants import get_color
import cv2

def tags2multilines(tags: Union[str, List], lw, tf, max_width):
    if isinstance(tags, str):
        taglist = tags.split(' ')
    else:
        taglist = tags

    sz = cv2.getTextSize(' ', 0, lw / 3, tf)
    line_height = sz[0][1]
    line_width = 0
    if len(taglist) > 0:
        lines = [taglist[0]]
        if len(taglist) > 1:
            for t in taglist[1:]:
                textl = len(t) * line_height
                if line_width + line_height + textl > max_width:
                    lines.append(t)
                    line_width = 0
                else:
                    line_width = line_width + line_height + textl
                    lines[-1] = lines[-1] + ' ' + t
    return lines, line_height

class AnimeInstances:

    def __init__(self, 
                 masks: Union[np.ndarray, torch.Tensor ]= None, 
                 bboxes: Union[np.ndarray, torch.Tensor ] = None, 
                 scores: Union[np.ndarray, torch.Tensor ] = None,
                 tags: List[str] = None, character_tags: List[str] = None) -> None:
        self.masks = masks
        self.tags = tags
        self.bboxes =  bboxes
        

        if scores is None:
            scores = [1.] * len(self)
            if self.is_numpy:
                scores = np.array(scores)
            elif self.is_tensor:
                scores = torch.tensor(scores)

        self.scores = scores

        if tags is None:
            self.tags = [''] * len(self)
            self.character_tags = [''] * len(self)
        else:
            self.tags = tags
            self.character_tags = character_tags

    @property
    def is_cuda(self):
        if isinstance(self.masks, torch.Tensor) and self.masks.is_cuda:
            return True
        else:
            return False
        
    @property
    def is_tensor(self):
        if self.is_empty:
            return False
        else:
            return isinstance(self.masks, torch.Tensor)
        
    @property
    def is_numpy(self):
        if self.is_empty:
            return True
        else:
            return isinstance(self.masks, np.ndarray)

    @property
    def is_empty(self):
        return self.masks is None or len(self.masks) == 0\
        
    def remove_duplicated(self):
        
        num_masks = len(self)
        if num_masks < 2:
            return
        
        need_cvt = False
        if self.is_numpy:
            need_cvt = True
            self.to_tensor()

        mask_areas = torch.Tensor([mask.sum() for mask in self.masks])
        sids = torch.argsort(mask_areas, descending=True)
        sids = sids.cpu().numpy().tolist()
        mask_areas = mask_areas[sids]
        masks = self.masks[sids]
        bboxes = self.bboxes[sids]
        tags = [self.tags[sid] for sid in sids]
        scores = self.scores[sids]

        canvas = masks[0]

        valid_ids: List = np.arange(num_masks).tolist()
        for ii, mask in enumerate(masks[1:]):

            mask_id = ii + 1
            canvas_and = torch.bitwise_and(canvas, mask)

            and_area = canvas_and.sum()
            mask_area = mask_areas[mask_id]

            if and_area / mask_area > 0.8:
                valid_ids.remove(mask_id)
            elif mask_id != num_masks - 1:
                canvas = torch.bitwise_or(canvas, mask)

        sids = valid_ids
        self.masks = masks[sids]
        self.bboxes = bboxes[sids]
        self.tags = [tags[sid] for sid in sids]
        self.scores = scores[sids]

        if need_cvt:
            self.to_numpy()

        # sids = 

    def draw_instances(self, 
                      img: np.ndarray,
                      draw_bbox: bool = True, 
                      draw_ins_mask: bool = True, 
                      draw_ins_contour: bool = True, 
                      draw_tags: bool = False,
                      draw_indices: List = None,
                      mask_alpha: float = 0.4):
        
        mask_alpha = 0.75


        drawed = img.copy()
        
        if self.is_empty:
            return drawed
        
        im_h, im_w = img.shape[:2]

        mask_shape = self.masks[0].shape
        if mask_shape[0] != im_h or mask_shape[1] != im_w:
            drawed = cv2.resize(drawed, (mask_shape[1], mask_shape[0]), interpolation=cv2.INTER_AREA)
            im_h, im_w = mask_shape[0], mask_shape[1]
        
        if draw_indices is None:
            draw_indices = list(range(len(self)))
        ins_dict = {'mask': [], 'tags': [], 'score': [], 'bbox': [], 'character_tags': []}
        colors = []
        for idx in draw_indices:
            ins = self.get_instance(idx, out_type='numpy')
            for key, data in ins.items():
                ins_dict[key].append(data)
            colors.append(get_color(idx))

        if draw_bbox:
            lw = max(round(sum(drawed.shape) / 2 * 0.003), 2)
            for color, bbox in zip(colors, ins_dict['bbox']):
                p1, p2 = (int(bbox[0]), int(bbox[1])), (int(bbox[2] + bbox[0]), int(bbox[3] + bbox[1]))
                cv2.rectangle(drawed, p1, p2, color, thickness=lw, lineType=cv2.LINE_AA)

        if draw_ins_mask:
            drawed = drawed.astype(np.float32)
            for color, mask in zip(colors, ins_dict['mask']):
                p = mask.astype(np.float32)
                blend_mask = np.full((im_h, im_w, 3), color, dtype=np.float32)
                alpha_msk = (mask_alpha * p)[..., None]
                alpha_ori = 1 - alpha_msk
                drawed = drawed * alpha_ori + alpha_msk * blend_mask
            drawed = drawed.astype(np.uint8)

        if draw_tags:
            lw = max(round(sum(drawed.shape) / 2 * 0.002), 2)
            tf = max(lw - 1, 1)
            for color, tags, bbox in zip(colors, ins_dict['tags'], ins_dict['bbox']):
                if not tags:
                    continue
                lines, line_height = tags2multilines(tags, lw, tf, bbox[2])
                for ii, l in enumerate(lines):
                    xy = (bbox[0], bbox[1] + line_height + int(line_height * 1.2 * ii))
                    cv2.putText(drawed, l, xy, 0, lw / 3, color, thickness=tf, lineType=cv2.LINE_AA)
                
        # cv2.imshow('canvas', drawed)
        # cv2.waitKey(0)
        return drawed
    

    def cuda(self):
        if self.is_empty:
            return self
        self.to_tensor(device='cuda')
        return self
    
    def cpu(self):
        if not self.is_tensor or not self.is_cuda:
            return self
        self.masks = self.masks.cpu()
        self.scores = self.scores.cpu()
        self.bboxes = self.bboxes.cpu()
        return self

    def to_tensor(self, device: str = 'cpu'):
        if self.is_empty:
            return self
        elif self.is_tensor and self.masks.device == device:
            return self
        self.masks = torch.from_numpy(self.masks).to(device)
        self.bboxes = torch.from_numpy(self.bboxes).to(device)
        self.scores = torch.from_numpy(self.scores ).to(device)
        return self
    
    def to_numpy(self):
        if self.is_numpy:
            return self
        if self.is_cuda:
            self.masks = self.masks.cpu().numpy()
            self.scores = self.scores.cpu().numpy()
            self.bboxes = self.bboxes.cpu().numpy()
        else:
            self.masks = self.masks.numpy()
            self.scores = self.scores.numpy()
            self.bboxes = self.bboxes.numpy()
        return self
    
    def get_instance(self, ins_idx: int, out_type: str = None, device: str = None):
        mask = self.masks[ins_idx]
        tags = self.tags[ins_idx]
        character_tags = self.character_tags[ins_idx]
        bbox = self.bboxes[ins_idx]
        score = self.scores[ins_idx]
        if out_type is not None:
            if out_type == 'numpy' and not self.is_numpy:
                mask = mask.cpu().numpy()
                bbox = bbox.cpu().numpy()
                score = score.cpu().numpy()
            if out_type == 'tensor' and not self.is_tensor:
                mask = torch.from_numpy(mask)
                bbox = torch.from_numpy(bbox)
                score = torch.from_numpy(score)
            if isinstance(mask, torch.Tensor) and device is not None and mask.device != device:
                mask = mask.to(device)
                bbox = bbox.to(device)
                score = score.to(device)
            
        return {
            'mask': mask,
            'tags': tags,
            'character_tags': character_tags,
            'bbox': bbox,
            'score': score
        }
    
    def __len__(self):
        if self.is_empty:
            return 0
        else:
            return len(self.masks)
        
    def resize(self, h, w, mode = 'area'):
        if self.is_empty:
            return
        if self.is_tensor:
            masks = self.masks.to(torch.float).unsqueeze(1)
            oh, ow = masks.shape[2], masks.shape[3]
            hs, ws = h / oh, w / ow
            bboxes = self.bboxes.float()
            bboxes[:, ::2] *= hs
            bboxes[:, 1::2] *= ws
            self.bboxes = torch.round(bboxes).int()
            masks = torch.nn.functional.interpolate(masks, (h, w), mode=mode)
            self.masks = masks.squeeze(1) > 0.3

    def compose_masks(self, output_type=None):
        if self.is_empty:
            return None
        else:
            mask = self.masks[0]
            if len(self.masks) > 1:
                for m in self.masks[1:]:
                    if self.is_numpy:
                        mask = np.logical_or(mask, m)
                    else:
                        mask = torch.logical_or(mask, m)
            if output_type is not None:
                if output_type == 'numpy' and not self.is_numpy:
                    mask = mask.cpu().numpy()
                if output_type == 'tensor' and not self.is_tensor:
                    mask = torch.from_numpy(mask)
            return mask