File size: 18,177 Bytes
cb9665a
1f8beea
 
 
6cca5dc
 
 
 
 
 
 
 
 
1f8beea
 
f97034c
81a83c8
47a88ae
81a83c8
f97034c
39c1245
 
 
1f8beea
 
39c1245
 
 
 
ccd7636
39c1245
23cbc09
1f8beea
39c1245
1f8beea
 
23cbc09
39c1245
1f8beea
 
23cbc09
 
 
 
 
 
 
39c1245
23cbc09
ccd7636
1f8beea
cb9665a
1f8beea
 
 
99a36aa
1f8beea
 
 
 
 
 
 
 
 
 
a92cf2d
23cbc09
e7fd4ee
b47ddec
 
 
 
 
 
e7fd4ee
86fa2c8
6cca5dc
 
9ab9acf
86fa2c8
 
 
 
1f8beea
 
23cbc09
86fa2c8
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cca5dc
1f8beea
 
 
 
 
 
2306e93
1f8beea
45481f4
2306e93
1f8beea
 
 
86fa2c8
1f8beea
 
 
 
 
 
 
 
 
15277c3
1f8beea
81a83c8
9419ae5
23cbc09
 
81a83c8
99a36aa
81a83c8
 
 
 
 
 
 
 
 
 
11af5bd
 
 
 
 
 
1f8beea
 
 
 
 
 
 
 
 
86fa2c8
 
6491cdf
 
1f8beea
86fa2c8
 
a476ea0
6491cdf
 
1f8beea
 
 
 
 
 
99a36aa
1f8beea
 
 
 
 
 
 
 
09d57a5
a9bcbb2
1f8beea
 
 
a9bcbb2
1f8beea
09d57a5
a9bcbb2
1f8beea
 
 
a9bcbb2
1f8beea
09d57a5
a9bcbb2
1f8beea
a9bcbb2
 
 
 
09d57a5
a9bcbb2
 
 
 
 
1f8beea
 
 
 
 
 
99a36aa
09d57a5
 
 
 
99a36aa
bc347f5
09d57a5
1f8beea
bc347f5
1f8beea
 
ccd7636
1f8beea
 
 
 
 
 
 
 
 
 
d8b7eec
1f8beea
 
 
 
 
 
 
 
 
 
81a83c8
 
86fa2c8
90e7f14
1f8beea
 
 
 
 
 
 
 
 
e0306f8
1f8beea
 
a9bcbb2
 
1e14cf1
 
1f8beea
 
 
 
1e14cf1
67acccc
9a7d487
 
4f7b85a
47a88ae
 
99a36aa
47a88ae
99a36aa
68e2466
47a88ae
42b98a9
 
47a88ae
 
ec9ed03
a9bcbb2
 
 
ec9ed03
47a88ae
1e14cf1
47a88ae
1f8beea
47a88ae
1e14cf1
47a88ae
1e14cf1
1f8beea
a9bcbb2
86fa2c8
1f8beea
15277c3
86fa2c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8beea
 
 
81a83c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675f687
68e2466
81a83c8
 
 
 
 
 
 
 
 
 
1f8beea
 
81a83c8
86fa2c8
1f8beea
81a83c8
86fa2c8
81a83c8
 
 
 
 
 
 
1f8beea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import gradio as gr
import torch    
import os
from utils import call
from diffusers import (
    DDPMScheduler,
    DDIMScheduler,
    PNDMScheduler,
    LMSDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    DPMSolverMultistepScheduler,
)
from diffusers.pipelines import StableDiffusionXLPipeline
StableDiffusionXLPipeline.__call__ = call
import os
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
from trainscripts.textsliders.demotrain import train_xl

os.environ['CURL_CA_BUNDLE'] = ''

model_map = {
             'Age' : 'models/age.pt', 
             'Chubby': 'models/chubby.pt',
             'Muscular': 'models/muscular.pt',
             'Surprised Look': 'models/suprised_look.pt',
             'Smiling' : 'models/smiling.pt',
             'Professional': 'models/professional.pt',
             
             
             
             'Long Hair' : 'models/long_hair.pt',
             'Curly Hair' : 'models/curlyhair.pt',
             
             'Pixar Style' : 'models/pixar_style.pt',
             'Sculpture Style': 'models/sculpture_style.pt',
             'Clay Style': 'models/clay_style.pt',
             
             'Repair Images': 'models/repair_slider.pt',
             'Fix Hands': 'models/fix_hands.pt',

             'Cluttered Room': 'models/cluttered_room.pt',

             'Dark Weather': 'models/dark_weather.pt',
             'Festive': 'models/festive.pt',
             'Tropical Weather': 'models/tropical_weather.pt',
             'Winter Weather': 'models/winter_weather.pt',
             
             'Wavy Eyebrows': 'models/eyebrow.pt',
             'Small Eyes (use scales -3, -1, 1, 3)': 'models/eyesize.pt',
            }

ORIGINAL_SPACE_ID = 'baulab/ConceptSliders'
SPACE_ID = os.getenv('SPACE_ID')

SHARED_UI_WARNING = f'''## Attention - Training could be slow in this shared UI. You can alternatively duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''


class Demo:

    def __init__(self) -> None:

        self.training = False
        self.generating = False
        self.device = 'cuda'
        self.weight_dtype = torch.bfloat16
        
        model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
        pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
        pipe = None
        del pipe
        torch.cuda.empty_cache()
        
        model_id = "stabilityai/sdxl-turbo"
        self.current_model = 'SDXL Turbo'
        euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
        self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
        self.pipe.enable_xformers_memory_efficient_attention()
        
        self.guidance_scale = 1
        self.num_inference_steps = 3
        
        with gr.Blocks() as demo:
            self.layout()
            demo.queue(max_size=5).launch(share=True, max_threads=2)
        

    def layout(self):

        with gr.Row():

            if SPACE_ID == ORIGINAL_SPACE_ID:

                self.warning = gr.Markdown(SHARED_UI_WARNING)
          
        with gr.Row():
                
            with gr.Tab("Test") as inference_column:

                with gr.Row():

                    self.explain_infr = gr.Markdown(value='This is a demo of [Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models](https://sliders.baulab.info/). To try out a model that can control a particular concept, select a model and enter any prompt, choose a seed, and finally choose the SDEdit timestep for structural preservation. Higher SDEdit timesteps results in more structural change. For example, if you select the model "Surprised Look" you can generate images for the prompt "A picture of a person, realistic, 8k" and compare the slider effect to the image generated by original model.  We have also provided several other pre-fine-tuned models like "repair" sliders to repair flaws in SDXL generated images (Check out the "Pretrained Sliders" drop-down). You can also train and run your own custom sliders. Check out the "train" section for custom concept slider training. <b>Current Inference is running on SDXL Turbo!</b>')

                with gr.Row():

                    with gr.Column(scale=1):

                        self.prompt_input_infr = gr.Text(
                            placeholder="photo of a person, with bokeh street background, realistic, 8k",
                            label="Prompt",
                            info="Prompt to generate",
                            value="photo of a person, with bokeh street background, realistic, 8k"
                        )

                        with gr.Row():
                            
                            self.model_dropdown = gr.Dropdown(
                                label="Pretrained Sliders",
                                choices= list(model_map.keys()),
                                value='Age',
                                interactive=True
                            )

                            self.seed_infr = gr.Number(
                                label="Seed",
                                value=42753
                            )
                            
                            self.slider_scale_infr = gr.Slider(
                                -4,
                                4,
                                label="Slider Scale",
                                value=3,
                                info="Larger slider scale result in stronger edit"
                            )

                            
                            self.start_noise_infr = gr.Slider(
                                600, 900, 
                                value=750, 
                                label="SDEdit Timestep", 
                                info="Choose smaller values for more structural preservation"
                            )
                            self.model_type = gr.Dropdown(
                                label="Model",
                                choices= ['SDXL Turbo', 'SDXL'],
                                value='SDXL Turbo',
                                interactive=True
                            )
                    with gr.Column(scale=2):

                        self.infr_button = gr.Button(
                            value="Generate",
                            interactive=True
                        )

                        with gr.Row():

                            self.image_orig = gr.Image(
                                label="Original SD",
                                interactive=False,
                                type='pil',
                            )
                            
                            self.image_new = gr.Image(
                                label=f"Concept Slider",
                                interactive=False,
                                type='pil',
                            )

            with gr.Tab("Train") as training_column:

                with gr.Row():

                    self.explain_train= gr.Markdown(value='In this part you can train a textual concept sliders for Stable Diffusion XL. Enter a target concept you wish to make an edit on (eg. person). Next, enter a enhance prompt of the attribute you wish to edit (for controlling age of a person, enter "person, old"). Then, type the supress prompt of the attribute (for our example, enter "person, young"). Then press "train" button. With default settings, it takes about 25 minutes to train a slider; then you can try inference above or download the weights. For faster training, please duplicate the repo and train with A100 or larger GPU. Code and details are at [github link](https://github.com/rohitgandikota/sliders).')

                with gr.Row():

                    with gr.Column(scale=3):

                        self.target_concept = gr.Text(
                            placeholder="Enter target concept to make edit on ...",
                            label="Prompt of concept on which edit is made",
                            info="Prompt corresponding to concept to edit (eg: 'person')",
                            value = ''
                        )
                        
                        self.positive_prompt = gr.Text(
                            placeholder="Enter the enhance prompt for the edit ...",
                            label="Prompt to enhance",
                            info="Prompt corresponding to concept to enhance (eg: 'person, old')",
                            value = ''
                        )
                        
                        self.negative_prompt = gr.Text(
                            placeholder="Enter the suppress prompt for the edit ...",
                            label="Prompt to suppress",
                            info="Prompt corresponding to concept to supress (eg: 'person, young')",
                            value = ''
                        )
                        
                        self.attributes_input = gr.Text(
                            placeholder="Enter the concepts to preserve (comma seperated). Leave empty if not required ...",
                            label="Concepts to Preserve",
                            info="Comma seperated concepts to preserve/disentangle (eg: 'male, female')",
                            value = ''
                        )
                        self.is_person = gr.Checkbox(
                            label="Person", 
                            info="Are you training a slider for person?")

                        self.rank = gr.Number(
                            value=4,
                            label="Rank of the Slider",
                            info='Slider Rank to train'
                        )
                        choices = ['xattn', 'noxattn']
                        self.train_method_input = gr.Dropdown(
                            choices=choices,
                            value='xattn',
                            label='Train Method',
                            info='Method of training. If [* xattn *] - loras will be on cross attns only. [* noxattn *] (official implementation) - all layers except cross attn',
                            interactive=True
                        )
                        self.iterations_input = gr.Number(
                            value=500,
                            precision=0,
                            label="Iterations",
                            info='iterations used to train - maximum of 1000'
                        )

                        self.lr_input = gr.Number(
                            value=2e-4,
                            label="Learning Rate",
                            info='Learning rate used to train'
                        )

                    with gr.Column(scale=1):

                        self.train_status = gr.Button(value='', variant='primary', interactive=False)

                        self.train_button = gr.Button(
                            value="Train",
                        )

                        self.download = gr.Files()

        self.infr_button.click(self.inference, inputs = [
            self.prompt_input_infr,
            self.seed_infr,
            self.start_noise_infr,
            self.slider_scale_infr,
            self.model_dropdown,
            self.model_type
            ],
            outputs=[
                self.image_new,
                self.image_orig
            ]
        )
        self.train_button.click(self.train, inputs = [
            self.target_concept,
            self.positive_prompt,
            self.negative_prompt,
            self.rank,
            self.iterations_input,
            self.lr_input,
            self.attributes_input,
            self.is_person,
            self.train_method_input
        ],
        outputs=[self.train_button,  self.train_status, self.download, self.model_dropdown]
        )

    def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, attributes_input, is_person, train_method_input, pbar = gr.Progress(track_tqdm=True)):
        iterations_input = min(int(iterations_input),1000)
        if attributes_input == '':
            attributes_input = None
        print(target_concept, positive_prompt, negative_prompt, attributes_input, is_person)
        
        randn = torch.randint(1, 10000000, (1,)).item()
        save_name = f"{randn}_{positive_prompt.replace(',','').replace(' ','').replace('.','')[:20]}"
        save_name += f'_alpha-{1}'
        save_name += f'_{train_method_input}'
        save_name += f'_rank_{int(rank)}.pt'
        
#         if torch.cuda.get_device_properties(0).total_memory * 1e-9 < 40:
#             return [gr.update(interactive=True, value='Train'), gr.update(value='GPU Memory is not enough for training... Please upgrade to GPU atleast 40GB or clone the repo to your local machine.'), None, gr.update()]
        if self.training:
            return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
        
        attributes = attributes_input
        if is_person:
            attributes = 'white, black, asian, hispanic, indian, male, female'
        
        self.training = True
        train_xl(target=target_concept, positive=positive_prompt, negative=negative_prompt, lr=lr_input, iterations=iterations_input, config_file='trainscripts/textsliders/data/config-xl.yaml', rank=int(rank), train_method=train_method_input, device=self.device, attributes=attributes, save_name=save_name)
        self.training = False

        torch.cuda.empty_cache()
        model_map[save_name.replace('.pt','')] = f'models/{save_name}'
        
        return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom slider in the "Test" tab'), f'models/{save_name}', gr.update(choices=list(model_map.keys()), value=save_name.replace('.pt',''))]

    
    def inference(self, prompt, seed, start_noise, scale, model_name, model, pbar = gr.Progress(track_tqdm=True)):
        
        seed = seed or 42753
        if self.current_model != model:
            if model=='SDXL Turbo':
                model_id = "stabilityai/sdxl-turbo"
                euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
                self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
                self.pipe.enable_xformers_memory_efficient_attention()
                self.guidance_scale = 1
                self.num_inference_steps = 3
                self.current_model = 'SDXL Turbo'
            else:
                model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
                self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
                self.pipe.enable_xformers_memory_efficient_attention()
                self.guidance_scale = 7.5
                self.num_inference_steps = 20
                self.current_model = 'SDXL'
        generator = torch.manual_seed(seed)

        model_path = model_map[model_name]
        unet = self.pipe.unet
        network_type = "c3lier"
        if 'full' in model_path:
            train_method = 'full'
        elif 'noxattn' in model_path:
            train_method = 'noxattn'
        elif 'xattn' in model_path:
            train_method = 'xattn'
            network_type = 'lierla'
        else:
            train_method = 'noxattn'

        modules = DEFAULT_TARGET_REPLACE
        if network_type == "c3lier":
            modules += UNET_TARGET_REPLACE_MODULE_CONV

        name = os.path.basename(model_path)
        rank = 4
        alpha = 1
        if 'rank' in model_path:
            rank = int(float(model_path.split('_')[-1].replace('.pt','')))
        if 'alpha1' in model_path:
            alpha = 1.0
        network = LoRANetwork(
                unet,
                rank=rank,
                multiplier=1.0,
                alpha=alpha,
                train_method=train_method,
            ).to(self.device, dtype=self.weight_dtype)
        network.load_state_dict(torch.load(model_path))


        generator = torch.manual_seed(seed)
        edited_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, network=network, start_noise=int(start_noise), scale=float(scale), unet=unet, guidance_scale=self.guidance_scale).images[0]
        
        generator = torch.manual_seed(seed)
        original_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, network=network, start_noise=start_noise, scale=0, unet=unet, guidance_scale=self.guidance_scale).images[0]
        
        del unet, network
        unet = None
        network = None
        torch.cuda.empty_cache()
        
        return edited_image, original_image 

demo = Demo()