File size: 5,471 Bytes
1f8beea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from typing import Literal, Optional, Union, List

import yaml
from pathlib import Path


from pydantic import BaseModel, root_validator
import torch
import copy

ACTION_TYPES = Literal[
    "erase",
    "enhance",
]


# XL ใฏไบŒ็จฎ้กžๅฟ…่ฆใชใฎใง
class PromptEmbedsXL:
    text_embeds: torch.FloatTensor
    pooled_embeds: torch.FloatTensor

    def __init__(self, *args) -> None:
        self.text_embeds = args[0]
        self.pooled_embeds = args[1]


# SDv1.x, SDv2.x ใฏ FloatTensorใ€XL ใฏ PromptEmbedsXL
PROMPT_EMBEDDING = Union[torch.FloatTensor, PromptEmbedsXL]


class PromptEmbedsCache:  # ไฝฟใ„ใพใ‚ใ—ใŸใ„ใฎใง
    prompts: dict[str, PROMPT_EMBEDDING] = {}

    def __setitem__(self, __name: str, __value: PROMPT_EMBEDDING) -> None:
        self.prompts[__name] = __value

    def __getitem__(self, __name: str) -> Optional[PROMPT_EMBEDDING]:
        if __name in self.prompts:
            return self.prompts[__name]
        else:
            return None


class PromptSettings(BaseModel):  # yaml ใฎใ‚„ใค
    target: str
    positive: str = None   # if None, target will be used
    unconditional: str = ""  # default is ""
    neutral: str = None  # if None, unconditional will be used
    action: ACTION_TYPES = "erase"  # default is "erase"
    guidance_scale: float = 1.0  # default is 1.0
    resolution: int = 512  # default is 512
    dynamic_resolution: bool = False  # default is False
    batch_size: int = 1  # default is 1
    dynamic_crops: bool = False  # default is False. only used when model is XL

    @root_validator(pre=True)
    def fill_prompts(cls, values):
        keys = values.keys()
        if "target" not in keys:
            raise ValueError("target must be specified")
        if "positive" not in keys:
            values["positive"] = values["target"]
        if "unconditional" not in keys:
            values["unconditional"] = ""
        if "neutral" not in keys:
            values["neutral"] = values["unconditional"]

        return values


class PromptEmbedsPair:
    target: PROMPT_EMBEDDING  # not want to generate the concept
    positive: PROMPT_EMBEDDING  # generate the concept
    unconditional: PROMPT_EMBEDDING  # uncondition (default should be empty)
    neutral: PROMPT_EMBEDDING  # base condition (default should be empty)

    guidance_scale: float
    resolution: int
    dynamic_resolution: bool
    batch_size: int
    dynamic_crops: bool

    loss_fn: torch.nn.Module
    action: ACTION_TYPES

    def __init__(
        self,
        loss_fn: torch.nn.Module,
        target: PROMPT_EMBEDDING,
        positive: PROMPT_EMBEDDING,
        unconditional: PROMPT_EMBEDDING,
        neutral: PROMPT_EMBEDDING,
        settings: PromptSettings,
    ) -> None:
        self.loss_fn = loss_fn
        self.target = target
        self.positive = positive
        self.unconditional = unconditional
        self.neutral = neutral
        
        self.guidance_scale = settings.guidance_scale
        self.resolution = settings.resolution
        self.dynamic_resolution = settings.dynamic_resolution
        self.batch_size = settings.batch_size
        self.dynamic_crops = settings.dynamic_crops
        self.action = settings.action

    def _erase(
        self,
        target_latents: torch.FloatTensor,  # "van gogh"
        positive_latents: torch.FloatTensor,  # "van gogh"
        unconditional_latents: torch.FloatTensor,  # ""
        neutral_latents: torch.FloatTensor,  # ""
    ) -> torch.FloatTensor:
        """Target latents are going not to have the positive concept."""
        return self.loss_fn(
            target_latents,
            neutral_latents
            - self.guidance_scale * (positive_latents - unconditional_latents)
        )
    

    def _enhance(
        self,
        target_latents: torch.FloatTensor,  # "van gogh"
        positive_latents: torch.FloatTensor,  # "van gogh"
        unconditional_latents: torch.FloatTensor,  # ""
        neutral_latents: torch.FloatTensor,  # ""
    ):
        """Target latents are going to have the positive concept."""
        return self.loss_fn(
            target_latents,
            neutral_latents
            + self.guidance_scale * (positive_latents - unconditional_latents)
        )

    def loss(
        self,
        **kwargs,
    ):
        if self.action == "erase":
            return self._erase(**kwargs)

        elif self.action == "enhance":
            return self._enhance(**kwargs)

        else:
            raise ValueError("action must be erase or enhance")


def load_prompts_from_yaml(path, attributes = []):
    with open(path, "r") as f:
        prompts = yaml.safe_load(f)
    print(prompts)    
    if len(prompts) == 0:
        raise ValueError("prompts file is empty")
    if len(attributes)!=0:
        newprompts = []
        for i in range(len(prompts)):
            for att in attributes:
                copy_ = copy.deepcopy(prompts[i])
                copy_['target'] = att + ' ' + copy_['target']
                copy_['positive'] = att + ' ' + copy_['positive']
                copy_['neutral'] = att + ' ' + copy_['neutral']
                copy_['unconditional'] = att + ' ' + copy_['unconditional']
                newprompts.append(copy_)
    else:
        newprompts = copy.deepcopy(prompts)
    
    print(newprompts)
    print(len(prompts), len(newprompts))
    prompt_settings = [PromptSettings(**prompt) for prompt in newprompts]

    return prompt_settings