Spaces:
Sleeping
Sleeping
File size: 7,291 Bytes
b53b6d3 4175bb8 b53b6d3 7943976 2b06c57 029ea87 a12be6f 7943976 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 67b8498 521227f 4175bb8 521227f 67b8498 4175bb8 d8e79b6 b53b6d3 521227f b53b6d3 521227f b53b6d3 521227f b53b6d3 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 2b06c57 d8e79b6 6461af3 7943976 d8e79b6 0a2fbf3 2b06c57 d8e79b6 7943976 d8e79b6 7943976 d8e79b6 2b06c57 ea1daab 2b06c57 ea1daab 2b06c57 d8e79b6 31179bc 2b06c57 d8e79b6 0a2fbf3 7943976 d8e79b6 e158920 d8e79b6 7943976 d8e79b6 b53b6d3 d8e79b6 b53b6d3 f746c21 d8e79b6 ea1daab b53b6d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import cv2
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import os
import time
import io
import base64
import torch
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from functools import partial
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(64 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(32 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.conv3(x))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.conv4(x))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x
model = None
model_path = "model3.pth"
model2 = None
model2_path = "model4.pth"
if os.path.exists(model_path):
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
new_state_dict = {}
for key, value in state_dict.items():
new_key = key.replace("module.", "")
new_state_dict[new_key] = value
model = Net()
model.load_state_dict(new_state_dict)
model.eval()
else:
print("Model file not found at", model_path)
# def process_image(input_image):
# image = Image.fromarray(input_image).convert("RGB")
#
# start_time = time.time()
# heatmap = scanmap(np.array(image), model)
# elapsed_time = time.time() - start_time
# heatmap_img = Image.fromarray(np.uint8(plt.cm.hot(heatmap) * 255)).convert('RGB')
#
# heatmap_img = heatmap_img.resize(image.size)
#
# return image, heatmap_img, int(elapsed_time)
#
#
# def scanmap(image_np, model):
# image_np = image_np.astype(np.float32) / 255.0
#
# window_size = (80, 80)
# stride = 10
#
# height, width, channels = image_np.shape
#
# probabilities_map = []
#
# for y in range(0, height - window_size[1] + 1, stride):
# row_probabilities = []
# for x in range(0, width - window_size[0] + 1, stride):
# cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
# cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
#
# with torch.no_grad():
# probabilities = model(cropped_window_torch)
#
# row_probabilities.append(probabilities[0, 1].item())
#
# probabilities_map.append(row_probabilities)
#
# probabilities_map = np.array(probabilities_map)
# return probabilities_map
#
# def gradio_process_image(input_image):
# original, heatmap, elapsed_time = process_image(input_image)
# return original, heatmap, f"Elapsed Time (seconds): {elapsed_time}"
#
# inputs = gr.Image(label="Upload Image")
# outputs = [
# gr.Image(label="Original Image"),
# gr.Image(label="Heatmap"),
# gr.Textbox(label="Elapsed Time")
# ]
#
# iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
# iface.launch()
def scanmap(image_np, model, threshold=0.5):
image_np = image_np.astype(np.float32) / 255.0
window_size = (80, 80)
stride = 10
height, width, channels = image_np.shape
fig, ax = plt.subplots(1)
ax.imshow(image_np)
for y in range(0, height - window_size[1] + 1, stride):
for x in range(0, width - window_size[0] + 1, stride):
cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
with torch.no_grad():
probabilities = model(cropped_window_torch)
# if probability is greater than threshold, draw a bounding box
if probabilities[0, 1].item() > threshold:
rect = patches.Rectangle((x, y), window_size[0], window_size[1], linewidth=1, edgecolor='r',
facecolor='none')
ax.add_patch(rect)
# Convert matplotlib figure to PIL Image
fig.canvas.draw()
img_arr = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
img = Image.fromarray(img_arr)
return img
def process_image(input_image):
image = Image.fromarray(input_image).convert("RGB")
start_time = time.time()
detected_ships_image = scanmap(np.array(image), model)
elapsed_time = time.time() - start_time
return image, detected_ships_image, int(elapsed_time)
def gradio_process_image(input_image):
original, detected_ships_image, elapsed_time = process_image(input_image)
return original, detected_ships_image, f"Elapsed Time (seconds): {elapsed_time}"
inputs = gr.Image(label="Upload Image")
outputs = [
gr.Image(label="Original Image"),
gr.Image(label="Heatmap"),
gr.Textbox(label="Elapsed Time")
]
iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
iface.launch()
|