File size: 7,291 Bytes
b53b6d3
 
4175bb8
b53b6d3
 
 
 
 
 
7943976
 
 
2b06c57
 
 
 
029ea87
a12be6f
7943976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521227f
 
 
67b8498
521227f
 
 
67b8498
521227f
 
 
67b8498
521227f
 
 
67b8498
521227f
67b8498
521227f
 
 
67b8498
 
521227f
 
 
67b8498
521227f
 
 
67b8498
521227f
 
 
67b8498
521227f
 
 
67b8498
521227f
 
 
 
 
 
67b8498
521227f
4175bb8
521227f
67b8498
4175bb8
d8e79b6
 
b53b6d3
521227f
 
b53b6d3
 
 
 
 
521227f
b53b6d3
 
 
 
521227f
b53b6d3
 
2b06c57
 
d8e79b6
2b06c57
 
 
 
d8e79b6
2b06c57
d8e79b6
2b06c57
d8e79b6
 
2b06c57
 
d8e79b6
2b06c57
 
d8e79b6
2b06c57
d8e79b6
2b06c57
d8e79b6
2b06c57
 
 
 
 
d8e79b6
2b06c57
 
d8e79b6
2b06c57
d8e79b6
2b06c57
d8e79b6
2b06c57
 
d8e79b6
2b06c57
 
 
d8e79b6
2b06c57
 
 
 
 
 
d8e79b6
2b06c57
 
d8e79b6
 
6461af3
7943976
 
 
d8e79b6
0a2fbf3
2b06c57
d8e79b6
7943976
 
 
d8e79b6
 
7943976
 
 
 
d8e79b6
2b06c57
ea1daab
 
2b06c57
 
ea1daab
 
 
 
 
 
 
 
2b06c57
 
d8e79b6
 
31179bc
2b06c57
d8e79b6
0a2fbf3
7943976
d8e79b6
e158920
d8e79b6
 
 
7943976
d8e79b6
b53b6d3
d8e79b6
 
 
b53b6d3
f746c21
d8e79b6
ea1daab
b53b6d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import cv2
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import os
import time
import io
import base64
import torch
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from functools import partial

class Net2(nn.Module):
    def __init__(self):
        super(Net2, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(64)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.dropout1 = nn.Dropout(0.25)

        self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.dropout2 = nn.Dropout(0.25)

        self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
        self.bn3 = nn.BatchNorm2d(64)
        self.pool3 = nn.MaxPool2d(2, 2)
        self.dropout3 = nn.Dropout(0.25)

        self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
        self.bn4 = nn.BatchNorm2d(64)
        self.pool4 = nn.MaxPool2d(2, 2)
        self.dropout4 = nn.Dropout(0.25)

        self.flatten = nn.Flatten()

        self.fc1 = nn.Linear(64 * 5 * 5, 200)
        self.fc2 = nn.Linear(200, 150)
        self.fc3 = nn.Linear(150, 2)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.pool1(x)
        x = self.dropout1(x)

        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool2(x)
        x = self.dropout2(x)

        x = F.relu(self.bn3(self.conv3(x)))
        x = self.pool3(x)
        x = self.dropout3(x)

        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool4(x)
        x = self.dropout4(x)

        x = self.flatten(x)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.softmax(self.fc3(x), dim=1)
        return x
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.dropout1 = nn.Dropout(0.25)

        self.conv2 = nn.Conv2d(32, 32, 3, padding=1)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.dropout2 = nn.Dropout(0.25)

        self.conv3 = nn.Conv2d(32, 32, 3, padding=1)
        self.pool3 = nn.MaxPool2d(2, 2)
        self.dropout3 = nn.Dropout(0.25)

        self.conv4 = nn.Conv2d(32, 32, 3, padding=1)
        self.pool4 = nn.MaxPool2d(2, 2)
        self.dropout4 = nn.Dropout(0.25)

        self.flatten = nn.Flatten()

        self.fc1 = nn.Linear(32 * 5 * 5, 200)
        self.fc2 = nn.Linear(200, 150)
        self.fc3 = nn.Linear(150, 2)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool1(x)
        x = self.dropout1(x)

        x = F.relu(self.conv2(x))
        x = self.pool2(x)
        x = self.dropout2(x)

        x = F.relu(self.conv3(x))
        x = self.pool3(x)
        x = self.dropout3(x)

        x = F.relu(self.conv4(x))
        x = self.pool4(x)
        x = self.dropout4(x)

        x = self.flatten(x)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = torch.sigmoid(self.fc3(x))
        return x

model = None
model_path = "model3.pth"

model2 = None
model2_path = "model4.pth"

if os.path.exists(model_path):
    state_dict = torch.load(model_path, map_location=torch.device('cpu'))
    new_state_dict = {}
    for key, value in state_dict.items():
        new_key = key.replace("module.", "")
        new_state_dict[new_key] = value

    model = Net()
    model.load_state_dict(new_state_dict)
    model.eval()

else:
    print("Model file not found at", model_path)


# def process_image(input_image):
#     image = Image.fromarray(input_image).convert("RGB")
#
#     start_time = time.time()
#     heatmap = scanmap(np.array(image), model)
#     elapsed_time = time.time() - start_time
#     heatmap_img = Image.fromarray(np.uint8(plt.cm.hot(heatmap) * 255)).convert('RGB')
#
#     heatmap_img = heatmap_img.resize(image.size)
#
#     return image, heatmap_img, int(elapsed_time)
#
#
# def scanmap(image_np, model):
#     image_np = image_np.astype(np.float32) / 255.0
#
#     window_size = (80, 80)
#     stride = 10
#
#     height, width, channels = image_np.shape
#
#     probabilities_map = []
#
#     for y in range(0, height - window_size[1] + 1, stride):
#         row_probabilities = []
#         for x in range(0, width - window_size[0] + 1, stride):
#             cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
#             cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
#
#             with torch.no_grad():
#                 probabilities = model(cropped_window_torch)
#
#             row_probabilities.append(probabilities[0, 1].item())
#
#         probabilities_map.append(row_probabilities)
#
#     probabilities_map = np.array(probabilities_map)
#     return probabilities_map
#
# def gradio_process_image(input_image):
#     original, heatmap, elapsed_time = process_image(input_image)
#     return original, heatmap, f"Elapsed Time (seconds): {elapsed_time}"
#
# inputs = gr.Image(label="Upload Image")
# outputs = [
#     gr.Image(label="Original Image"),
#     gr.Image(label="Heatmap"),
#     gr.Textbox(label="Elapsed Time")
# ]
#
# iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
# iface.launch()
def scanmap(image_np, model, threshold=0.5):
    image_np = image_np.astype(np.float32) / 255.0

    window_size = (80, 80)
    stride = 10

    height, width, channels = image_np.shape

    fig, ax = plt.subplots(1)
    ax.imshow(image_np)

    for y in range(0, height - window_size[1] + 1, stride):
        for x in range(0, width - window_size[0] + 1, stride):
            cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
            cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)

            with torch.no_grad():
                probabilities = model(cropped_window_torch)

            # if probability is greater than threshold, draw a bounding box
            if probabilities[0, 1].item() > threshold:
                rect = patches.Rectangle((x, y), window_size[0], window_size[1], linewidth=1, edgecolor='r',
                                         facecolor='none')
                ax.add_patch(rect)

    # Convert matplotlib figure to PIL Image
    fig.canvas.draw()
    img_arr = np.array(fig.canvas.renderer.buffer_rgba())
    plt.close(fig)

    img = Image.fromarray(img_arr)

    return img


def process_image(input_image):
    image = Image.fromarray(input_image).convert("RGB")

    start_time = time.time()
    detected_ships_image = scanmap(np.array(image), model)
    elapsed_time = time.time() - start_time

    return image, detected_ships_image, int(elapsed_time)

def gradio_process_image(input_image):
    original, detected_ships_image, elapsed_time = process_image(input_image)
    return original, detected_ships_image, f"Elapsed Time (seconds): {elapsed_time}"

inputs = gr.Image(label="Upload Image")
outputs = [
    gr.Image(label="Original Image"),
    gr.Image(label="Heatmap"),
    gr.Textbox(label="Elapsed Time")
]

iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
iface.launch()