File size: 12,881 Bytes
4a250a9 637418e 4a250a9 bdad9ba ed709d2 4a250a9 42d187d ed709d2 4a250a9 bdad9ba f5d3c4a 4a250a9 637418e 4a250a9 637418e 4a250a9 bdad9ba 637418e bdad9ba 637418e bdad9ba 637418e 4a250a9 637418e 4a250a9 637418e 4a250a9 637418e 4a250a9 bdad9ba 637418e 8212ded 4a250a9 71fd18a 637418e 71fd18a 637418e 4a250a9 bdad9ba 4a250a9 637418e cd9e8cd bdad9ba 637418e 4a250a9 637418e 4a250a9 bdad9ba 4a250a9 637418e bdad9ba 637418e 4a250a9 bdad9ba 4a250a9 637418e 4a250a9 637418e bdad9ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import joblib
import cv2
from deepface import DeepFace
import random
import gradio as gr
import matplotlib.pyplot as plt
from transformers import pipeline
from PIL import Image
from ntscraper import Nitter
import csv
def video_sentiment_score(sentiment):
sentiment_mapping = {
"happy": 1.0,
"sad": -1.0,
"angry": -1.5,
"surprised": 0.5,
"neutral": 0.0
}
return sentiment_mapping.get(sentiment, 0.0)
def text_emotion_score(emotion):
emotion_mapping = {
"joy": 1.0,
"sadness": -1.0,
"anger": -1.5,
"surprise": 0.5,
"neutral": 0.0,
"disgust": -1.5,
"fear": -1.0
}
return emotion_mapping.get(emotion, 0.0)
def environment_score(environment):
environment_mapping = {
"Good": 1.0,
"Moderate": 0.0,
"Bad": -1.0
}
return environment_mapping.get(environment, 0.0)
# Scraper function
def scrape_tweets(hashtag, mode, num_of_tweets, since_date, until_date):
print(f"num_of_tweets before conversion: {num_of_tweets}")
num_of_tweets = int(num_of_tweets)
import httpx
httpx._config.DEFAULT_TIMEOUT = httpx.Timeout(3.0)
scraper = Nitter()
tweets = scraper.get_tweets(
hashtag,
mode='hashtag',
number=num_of_tweets,
since=since_date,
until=until_date
)
final_tweets = []
with open('tweets_kuru.csv', 'w', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow([f'Scraping Tweets for #{hashtag}'])
writer.writerow(['User', 'Username', 'Tweet', 'Date'])
for tweet in tweets['tweets']:
tweet_details = [tweet['user']['name'], tweet['user']['username'], tweet['text'], tweet['date']]
writer.writerow([tweet['user']['name'], tweet['user']['username'], tweet['text'], tweet['date']])
final_tweets.append(tweet_details)
tweet_df = pd.DataFrame(final_tweets, columns=['User', 'Username', 'Tweet', 'Date'])
return tweet_df
# Sensor Simulate Data
np.random.seed(42)
data_size = 1000
aqi_values = np.random.randint(0, 500, size=data_size)
noise_levels = np.random.randint(30, 110, size=data_size)
temperatures = np.random.randint(-10, 40, size=data_size)
humidity_levels = np.random.randint(10, 90, size=data_size)
pm25_values = np.random.randint(0, 500, size=data_size)
co2_levels = np.random.randint(250, 6000, size=data_size)
def classify_environment(aqi, noise, temp, humidity, pm25, co2):
if aqi > 150 or noise > 80 or temp > 35 or humidity > 80 or pm25 > 55 or co2 > 2000:
return "Bad"
elif aqi > 100 or noise > 60 or temp > 30 or humidity > 60 or pm25 > 35 or co2 > 1000:
return "Moderate"
else:
return "Good"
labels = [classify_environment(aqi, noise, temp, humidity, pm25, co2)
for aqi, noise, temp, humidity, pm25, co2 in
zip(aqi_values, noise_levels, temperatures, humidity_levels, pm25_values, co2_levels)]
data = pd.DataFrame({
'AQI': aqi_values,
'Noise': noise_levels,
'Temperature': temperatures,
'Humidity': humidity_levels,
'PM2.5': pm25_values,
'CO2': co2_levels,
'Label': labels
})
# Train a Simple Classification Model
X = data[['AQI', 'Noise', 'Temperature', 'Humidity', 'PM2.5', 'CO2']]
y = data['Label']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, predictions))
# Save the model
joblib.dump(model, 'environment_model.pkl')
# Function to analyze video sentiment
def analyze_video_sentiment(video_path, num_frames=10, detector_backend='retinaface'):
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Select num_frames random frame indices
frame_indices = random.sample(range(total_frames), num_frames)
emotions = {"happy": 0, "sad": 0, "angry": 0, "surprised": 0, "neutral": 0}
frame_images = []
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if not ret:
continue
# Convert to RGB
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Face detection and emotion analysis
try:
results = DeepFace.analyze(rgb_frame, actions=["emotion"], enforce_detection=True,
detector_backend=detector_backend)
for result in results:
if result is None or result == {}:
continue
# Draw bounding box
face_coordinates = result["region"]
x1, y1, x2, y2 = face_coordinates["x"], face_coordinates["y"], face_coordinates["x"] + face_coordinates[
"w"], face_coordinates["y"] + face_coordinates["h"]
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Add emotion label above the bounding box
dominant_emotion = result["dominant_emotion"]
cv2.putText(frame, dominant_emotion, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# Update emotion counts
if dominant_emotion in emotions:
emotions[dominant_emotion] += 1
except ValueError as e:
if "No face detected" in str(e):
continue
else:
raise e
# Convert frame to image for Gradio display
frame_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frame_images.append(frame_image)
cap.release()
cv2.destroyAllWindows()
# Determine dominant emotion
dominant_emotion = max(emotions, key=emotions.get)
# Return dominant emotion and frame images
return dominant_emotion, frame_images
# Load the classifier for sentiment analysis
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True)
def classify_tweets(tweets_df):
if tweets_df.empty:
return "No tweets to analyze."
tweet_texts = tweets_df['Tweet'].tolist()
results = classifier(tweet_texts)
emotions = [max(result, key=lambda x: x['score'])['label'] for result in results]
tweet_df = tweets_df.copy()
tweet_df['Sentiment'] = emotions
# Plot sentiment distribution
sentiment_counts = tweet_df['Sentiment'].value_counts()
fig, ax = plt.subplots(figsize=(8, 5))
bars = ax.bar(sentiment_counts.index, sentiment_counts.values,
color=['#FF6F61', '#6B5B95', '#88B04B', '#F7CAC9', '#92A8D1', '#955251'])
ax.set_xlabel('Sentiment', fontsize=14, fontweight='bold', color='#34495E')
ax.set_ylabel('Count', fontsize=14, fontweight='bold', color='#34495E')
ax.set_title('Tweet Sentiment Distribution', fontsize=18, fontweight='bold', color='#2E4053')
ax.tick_params(axis='x', rotation=0, colors='#34495E', labelsize=12)
ax.tick_params(axis='y', colors='#34495E', labelsize=12)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.yaxis.grid(True, linestyle='--', which='major', color='grey', alpha=.45)
ax.xaxis.set_tick_params(width=0)
for bar in bars:
yval = bar.get_height()
ax.text(bar.get_x() + bar.get_width() / 2, yval + 0.01, round(yval, 2), ha='center', va='bottom',
color='#34495E', fontsize=12, fontweight='bold')
plt.tight_layout()
return tweet_df, fig
def classify_and_plot(hashtag, mode, num_of_tweets, since_date, until_date):
tweet_df = scrape_tweets(hashtag, mode, num_of_tweets, since_date, until_date)
tweet_df, fig = classify_tweets(tweet_df)
return tweet_df, fig
# Function to classify overall sentiment
def classify_overall_sentiment(video, hashtag, mode, num_of_tweets, since_date, until_date, aqi, noise, temp,
humidity, pm25, co2):
# Video Sentiment Analysis
video_sentiment, frame_images = analyze_video_sentiment(video)
# Social Media Sentiment Analysis
tweet_df, plot = classify_and_plot(hashtag, mode, num_of_tweets, since_date, until_date)
text_emotion = tweet_df['Sentiment'].value_counts().idxmax() if not tweet_df.empty else "No text analyzed"
# Environment Sentiment Analysis
environment = classify_environment(aqi, noise, temp, humidity, pm25, co2)
# Calculate overall sentiment and create a plot
overall_sentiment = f"Video Sentiment: {video_sentiment}, Environment Sentiment: {environment}, Text Emotion: {text_emotion}"
sentiments = ["Video Sentiment", "Text Emotion", "Environment Sentiment"]
scores = [video_sentiment_score(video_sentiment), text_emotion_score(text_emotion), environment_score(environment)]
fig, ax = plt.subplots()
ax.plot(sentiments, scores, marker='o')
ax.set_xlabel('Sentiment Source', fontsize=14, fontweight='bold', color='#34495E')
ax.set_ylabel('Sentiment Score', fontsize=14, fontweight='bold', color='#34495E')
ax.set_title('Overall Sentiment Scores', fontsize=18, fontweight='bold', color='#2E4053')
plt.tight_layout()
return overall_sentiment, frame_images, tweet_df, plot, fig
# Create Gradio Interfaces
example_video = "TimesSquare.mp4" #hachaudhfikadjsfbhisuadbikahus
video_interface = gr.Interface(
fn=analyze_video_sentiment,
inputs=[
gr.Video(value=example_video), # Adding the example video here
gr.Slider(minimum=1, maximum=20, step=1),
gr.Radio(["retinaface", "mtcnn", "opencv", "ssd", "dlib", "mediapipe"], label="Detector Backend", value="retinaface")
],
outputs=["text", gr.Gallery(label="Analyzed Frames")],
title="Video Sentiment Analysis",
)
text_interface = gr.Interface(
fn=classify_and_plot,
inputs=[gr.Textbox(label="Hashtag"),
gr.Radio(["latest", "top"], label="Mode"),
gr.Slider(1, 1000, step=1, label="Number of Tweets"),
gr.Textbox(label="Since Date (YYYY-MM-DD)"),
gr.Textbox(label="Until Date (YYYY-MM-DD)")],
outputs=[gr.DataFrame(label="Scraped Tweets"), gr.Plot()],
title="Social Media Sentiment Analysis"
)
environment_interface = gr.Interface(
fn=classify_environment,
inputs=[gr.Slider(minimum=0, maximum=500, step=1, label="AQI"),
gr.Slider(minimum=0, maximum=110, step=1, label="Noise"),
gr.Slider(minimum=-10, maximum=50, step=1, label="Temperature"),
gr.Slider(minimum=0, maximum=100, step=1, label="Humidity"),
gr.Slider(minimum=0, maximum=500, step=1, label="PM2.5"),
gr.Slider(minimum=250, maximum=6000, step=1, label="CO2")],
outputs="text",
title="Environment Sentiment Analysis"
)
# The overall_interface
# Update the overall_interface
overall_interface = gr.Interface(
fn=classify_overall_sentiment,
inputs=[gr.Video(),
gr.Textbox(label="Hashtag"), gr.Radio(["latest", "top"], label="Mode"),
gr.Slider(1, 1000, step=1, label="Number of Tweets"),
gr.Textbox(label="Since Date (YYYY-MM-DD)"), gr.Textbox(label="Until Date (YYYY-MM-DD)"),
gr.Slider(minimum=0, maximum=500, step=1, label="AQI"),
gr.Slider(minimum=0, maximum=110, step=1, label="Noise"),
gr.Slider(minimum=-10, maximum=50, step=1, label="Temperature"),
gr.Slider(minimum=0, maximum=100, step=1, label="Humidity"),
gr.Slider(minimum=0, maximum=500, step=1, label="PM2.5"),
gr.Slider(minimum=250, maximum=6000, step=1, label="CO2")],
outputs=["text", gr.Gallery(), gr.DataFrame(), gr.Plot(), gr.Plot()],
title="Overall Sentiment Analysis"
)
scraper_interface = gr.Interface(
fn=scrape_tweets,
inputs=[gr.Textbox(label="Hashtag"),
gr.Radio(["latest", "top"], label="Mode"),
gr.Slider(1, 1000, step=1, label="Number of Tweets"),
gr.Textbox(label="Since Date (YYYY-MM-DD)"),
gr.Textbox(label="Until Date (YYYY-MM-DD)")],
outputs=gr.DataFrame(),
title="Scrape Tweets"
)
# Combine Interfaces into Tabbed Layout
tabbed_interface = gr.TabbedInterface(
[video_interface, text_interface, environment_interface, overall_interface, scraper_interface],
["Video Sentiment Analysis", "Social Media Sentiment Analysis", "Environment Sentiment Analysis",
"Overall Sentiment Analysis", "Scrape Tweets"])
# Launch the Interface
tabbed_interface.launch(debug=True, share=True)
|