File size: 1,063 Bytes
80d690b
ed61242
80d690b
 
 
ed61242
80d690b
 
ed61242
80d690b
ed61242
 
80d690b
 
ed61242
 
 
80d690b
ed61242
80d690b
 
 
ed61242
80d690b
ed61242
 
 
 
 
 
80d690b
 
ed61242
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
from textblob import TextBlob

def sentiment_analysis(text: str) -> dict:
    """
    Perform sentiment analysis on the input text.

    Args:
        text (str): The input text to analyze.

    Returns:
        dict: A dictionary containing the polarity and subjectivity of the text.
    """
    blob = TextBlob(text)
    sentiment = blob.sentiment
    return {
        "polarity": round(sentiment.polarity, 2),
        "subjectivity": round(sentiment.subjectivity, 2),
        "assessment": "Positive" if sentiment.polarity > 0 else "Negative" if sentiment.polarity < 0 else "Neutral"
    }

demo = gr.Interface(
    fn=sentiment_analysis,
    inputs=gr.Textbox(placeholder="Enter text here...", label="Input Text"),
    outputs=gr.JSON(label="Sentiment Analysis Result"),
    title="Sentiment Analysis App",
    description="This app performs sentiment analysis on the input text using TextBlob. It provides the polarity, subjectivity, and an assessment of the sentiment.",


)

if __name__ == "__main__":
    demo.launch(mcp_server=True)